The geodesic flow for discrete groups of infinite volume
HTML articles powered by AMS MathViewer
- by Peter J. Nicholls
- Proc. Amer. Math. Soc. 96 (1986), 311-317
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818464-0
- PDF | Request permission
Abstract:
Let $\Gamma$ be a discrete group acting in the unit ball $B$ of euclidean $n$-space and $T(B)$ the unit tangent space of $B$. We define the geodesic flow ${g_t}$ on the quotient space $\Omega = T(B)/\Gamma$ and show that for discrete groups of infinite volume the flow is of zero type—namely, for measurable subsets $A,B$ of $\Omega$ which are of finite measure, ${\lim _{t \to \infty }}{g_t}(A) \cap B = 0$. Using this result, we give a new and elementary proof of the fact that for a discrete group of infinite volume, $N(r) = o(V\{ x:\left | x \right | < r\} )$ as $r \to 1$, where $N(r)$ is the orbital counting function and $V$ denotes hyperbolic volume.References
- Lars V. Ahlfors, Möbius transformations in several dimensions, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. MR 725161
- Eberhard Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 91 (1939), 261–304 (German). MR 1464
- Peter J. Nicholls, Transitivity properties of Fuchsian groups, Canadian J. Math. 28 (1976), no. 4, 805–814. MR 460626, DOI 10.4153/CJM-1976-077-8
- Peter J. Nicholls, The orbital counting function for discrete groups of infinite volume, J. London Math. Soc. (2) 23 (1981), no. 3, 460–468. MR 616552, DOI 10.1112/jlms/s2-23.3.460
- Peter Nicholls, A lattice point problem in hyperbolic space, Michigan Math. J. 30 (1983), no. 3, 273–287. MR 725781, DOI 10.1307/mmj/1029002905
- S. J. Patterson, Spectral theory and Fuchsian groups, Math. Proc. Cambridge Philos. Soc. 81 (1977), no. 1, 59–75. MR 447120, DOI 10.1017/S030500410000027X
- Hiroshi Shirakawa, An example of infinite measure preserving ergodic geodesic flow on a surface with constant negative curvature, Comment. Math. Univ. St. Paul. 31 (1982), no. 2, 163–182. MR 701003
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 311-317
- MSC: Primary 58F17
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818464-0
- MathSciNet review: 818464