A remark about viscosity solutions of Hamilton-Jacobi equations at the boundary
HTML articles powered by AMS MathViewer
- by P. E. Souganidis
- Proc. Amer. Math. Soc. 96 (1986), 323-329
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818466-4
- PDF | Request permission
Abstract:
We consider viscosity solutions of first-order partial differential equations of Hamilton-Jacobi type in bounded domains. We give criteria which identify boundary points at which the equation is automatically satisfied in the viscosity sense, if it holds in the interior. These complement some recent results of M. G. Crandall and R. Newcomb [3].References
- M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. MR 732102, DOI 10.1090/S0002-9947-1984-0732102-X
- Michael G. Crandall and Pierre-Louis Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42. MR 690039, DOI 10.1090/S0002-9947-1983-0690039-8
- Michael G. Crandall and Richard Newcomb, Viscosity solutions of Hamilton-Jacobi equations at the boundary, Proc. Amer. Math. Soc. 94 (1985), no. 2, 283–290. MR 784180, DOI 10.1090/S0002-9939-1985-0784180-6
- Michael G. Crandall and Panagiotis E. Souganidis, Developments in the theory of nonlinear first-order partial differential equations, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 131–142. MR 799343, DOI 10.1016/S0304-0208(08)73688-0
- Lawrence C. Evans, Some min-max methods for the Hamilton-Jacobi equation, Indiana Univ. Math. J. 33 (1984), no. 1, 31–50. MR 726105, DOI 10.1512/iumj.1984.33.33002
- Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667669
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 323-329
- MSC: Primary 35F20; Secondary 35L99
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818466-4
- MathSciNet review: 818466