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REGULARITY OF RIESZ MEASURES

P. PRINZ

ABSTRACT. It is shown that Riesz measures are inner regular, i.e., each

Borel set may be approximated from inside by closed sets, if the basic space

is metacompact or para-Lindelöf. On the other hand, an example is given to

show that local compactness is not sufficient to ensure inner regularity of Riesz

measures.

1. Introduction. Regularity is an important tool to ensure the desired be-

haviour of measures in topological spaces and to classify them by their properties

in relation to the topology (see, e.g., [4]). For instance, Radon measures are those

locally finite Borel measures which are compact inner regular. It is well known

that Radon measures are inner regular but not necessarily outer regular: there

are standard examples of er-finite Radon measures on separable (resp. metrisable),

locally compact spaces which fail to be outer regular (cf. [5, Examples 6 and 7]).

The régularisation from outside leads to the dual concept of Riesz measures, which

sometimes is more adequate than that of Radon measures, e.g. in connection with

the Riesz representation theorem. Of course, a Riesz measure need not be compact

inner regular. But what about inner regularity? In this paper it is shown that inner

regularity holds for Riesz measures in a wide class of topological spaces including

the metrisable and the Lindelöf spaces. On the other hand an example shows that

a locally compact space may support a Riesz measure which is not inner regular.

2. Preliminaries. Throughout this paper, all spaces will be Hausdorff. A space

X is called paracompact (para-Lindelöf) if each open cover has a locally finite (locally

countable) open refinement. X is called metacompact (meta-Lindelöf) if each open

cover has a point-finite (point-countable) open refinement. Since there are para-

Lindelöf spaces which are not metacompact, and conversely, metacompact spaces

which are not para-Lindelöf (cf. [8, Examples 63, 144]), no other than the trivial

implications are valid.

Let X be a fixed space and denote by Q, J and K the families of all open, closed

and compact subsets of X, respectively. A Borel measure in X is a nonnegative, not

necessarily finite measure defined on the Borel a-algebra S of X. All Borel measures

will be locally finite, i.e. each point has a neighbourhood of finite measure. A Borel

measure p, in X is called

(a) outer regular if u.(B) = mf{ß(G): B C G G §} for each B G B;

(b) inner regular if jt(B) = sup{ji(F): B D F G 7} for each B G B\

(c) compact inner regular if ß(B) = sup{/j.(K): B D K G K} for each B G B;

(d) weakly compact inner regular if ß(G) = s\ip{p(K): G D Kg K} for each

GgQ.
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A Radon measure is a locally finite, compact inner regular Borel measure, whereas

a Riesz measure is a locally finite Borel measure which is weakly compact inner

regular and outer regular.

There is a natural bijection between the class of Radon measures and the class

of Riesz measures (see [7, pp. 12-15]). Indeed, for each Radon measure m there

exists the smallest Riesz measure M dominating m; M is obtained from m by

régularisation from outside, i.e.,

(i) M(B) = inf{m(G): B c G G 9}    for B G B.

Conversely, if M is a Riesz measure, then m defined by

(ii) m(B) = sup{M (K): B D K G K)    for B G B

is the largest Radon measure dominated by M. The duality given by (i) and

(ii) is very useful, for instance to define Riesz measures (on subspaces) via Radon

measures. Clearly, two associated measures m and M coincide on^U^ and, using

a standard argument, also on {B G B:M(B) < oo}.

A concassage of a Radon measure m in X is a disjoint family C of nonempty

compact subsets of X satisfying

(a) m(B) = Exec m(K n B) for each B G B;
(b) m(K n G) > 0 if K G C, G G 9 and K n G 4. 0.

Zorn's lemma provides that each Radon measure has a concassage (see, e.g., [7, p.

46, Theorem 13]). It follows directly from the definition that each open set with

finite measure meets at most a countable number of sets K G C. In view of the

above-mentioned duality we say that C is a concassage of a Riesz measure M if C

is a concassage of the associated Radon measure m.

3. Main result. As will be shown in §4, there exists a Riesz measure in a locally

compact space which is not inner regular. However, if the basic space X has some

very weak covering property then each Riesz measure in X is regular.

THEOREM. Let M be a Riesz measure on a HausdorfJ topological space X. Then

M is inner regular if one of the following conditions is satisfied:

(a) X is metacompact;

(b) X is para-Lindelöf;
(c) X is meta-Lindelöf and M has a concassage consisting of separable subsets.

PROOF. I. Since a Riesz measure is r-smooth, we may assume that the support

of M is the whole space, i.e.,

(1) M(G) > 0   for each 0 ^ G G Q.

2. Now let B be an arbitrary Borel subset of X. Clearly, it is sufficient to consider

the case m(B) < M(B). In particular, if Qf — {G G Q: M(G) < 00}, then

(2) B\ M Gn 4 0    for each sequence (Gn)„eN in Of-

neN

3. According to the assumptions we choose an open refinement A of Q¡, i.e., A

is point-finite in case (a), locally countable in case (b) and point-countable in case

(c). By Zorn's lemma there is a maximal subset F of B such that

(3) \F O U\ < 1    for each U G A.
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F is uncountable. For otherwise it follows from the point-countability of A that the

family A' = {U G A: UnF ^ 0} is countable and hence not a cover of B, using (2)

above. Consequently we can add a point x G B\ (J A' to F without violating (3), a

contradiction to the definition of F.

4. Since A is a cover of X, (3) assures that F is closed. Thus it is left to prove

M(F) = oo. In part 5 below we will see

(4) AG = {U G A: M(U n G) > 0}

is countable for each G G Q¡. Hence, in view of (1), the family {U G A: UA\G =fi 0}

is countable for each G G §/. As F is uncountable, it follows by using (3) again,

that F is not contained in an open set of finite measure. This means M(F) — oo.

5. (a) Let A be point-finite and suppose that the set Ac in (4) is uncountable for

some G G Cf. Then there are e > 0 and Un G Ag, n G N, such that M(UnDG) > e

for each n G N. This yields

M ( lim sup(C/n n G) J > lim sup M(Un n G) > e,

in particular, limsupneN Un jt 0. But this contradicts the assumption on A, and

thus Ag is countable.

(b) Now let A be locally countable. Fix a concassage C of M, and note that the

family Ak — {U G A: U D K ^ 0} is countable for each K G A. Further, each

G G Qf meets only countably many sets K G C This shows that Ag is countable,

since by the weak compact regularity of M we have

AGc\J{AK:KnG7t0}.

(c) If A is point-countable and D a concassage as required in the hypotheses, then

the separability of each K G V implies that the family Ak = {U G A:UC\K ^ 0} is

countable for each K G V. Thus, proceeding as above, the assertion (4) follows.    D

REMARKS. 1. The essential point of the preceding proof is the interesting fact

that each non-M-moderated subset A of X—i.e., A admits no countable cover by

open sets of finite M-measure—contains an uncountable, closed, discrete subset of

infinite measure.

2. Since an element of a concassage satisfies the countable chain condition (CCC),

the assumption on the existence of a "separable concassage" is very weak. Indeed,

according to part 5 (c) of the above proof, Riesz measures are inner regular on each

meta-Lindelöf space supposing

H In a compact Hausdorff CCC space each point-countable cover is countable.

The hypothesis H is consistent with the axioms of Zermelo-Fraenkel set theory, but

incompatible with the continuum hypothesis. For a detailed discussion of H we

refer to [6].

4. An example. Let w and fi denote the first infinite and the first uncountable

ordinal, respectively. Identifying a given ordinal with the set of all smaller ordinals

we define on I = (w + 1) x Í] a topology as follows: the points (n, a) G w x fi are

isolated and a local base at (w, a) G {oj} x fi is given by the sets

M   ]n^, w] x {7}    where ß < a and n-, < u¡ for each 7 G]ß, a}.

ß<1<a
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Clearly X is Hausdorff and completely regular, for X is zero-dimensional. Further

Y — {ui} x fi is a closed subset and with the induced topology homeomorphic to fi

with the usual order topology. Since fi is countably compact but not compact, Y

and thus X is not metacompact (e.g. [2, Theorem 5.3.1]). X also fails to be meta-

Lindelöf, which may be seen by purely topological arguments (cf. [2, Theorem

5.3.3]), but is a direct consequence of the preceding Theorem, since X admits a

discrete Radon measure whose associated Riesz measure is not inner regular.

Let (an)n6u) be a sequence of positive real numbers with J2neu> a« < °° and

define a measure on S by

m(B) =J2   ^2 an    for B GB,
aefl n£Ba

where Ba = B Pi (u> x {a}). As (an)n&UJ is summable, it follows directly from the

definitions that m is locally finite and therefore a Radon measure in X. Let M be

the Riesz measure associated with m. Then M is locally finite, too, which yields

M(B) = 0   for each bounded subset B of Y.

On the other hand, if G is an open subset of X such that G fl Y is unbounded then

we have m(G) = oo, since by definition G contains uncountably many points of

w x fi, each of which has positive measure. This, together with the outer regularity,

implies

M(B) = oo    if S G S with BC\Y unbounded.

Now let U be an open subset of fi such that U and fi\f7 are unbounded, e.g.,

U = {a + 1: a G fi}. Since two unbounded closed subsets of fi have a nonvoid

intersection, U contains no unbounded closed subset and the same holds true for

B = {w} x U in Y. Consequently, B is a Borel set in X satisfying M(B) = oo and

M(F) = 0 for each closed subset F of B.

REMARKS. 1. The space X of the preceding example is not locally compact,

since a basic neighbourhood of (w, a) is closed and may be covered by the disjoint

open sets {n7 + 1}, ß < -y < a, and [jß<1<a}n1 + l,w] x {7}. To get a nonregular

Riesz measure in a locally compact space, we use a general method of embedding

suggested by Fremlin [3, 2J]. As X is completely regular, we regard X as a subspace

of its Stone-Cech compactification ßX. Set

X = \J{G: GcßX open and M(G n X) < 00}.

Since X is an open subset of ßX and M is locally finite, X is locally compact and

X C X. Define M in X by

M(G) = M(G n X)    for an open set GcX,

M(B) = inf{M(G): G C X open and B C G}    for a Borel set B C X.

Clearly M(B) = M*(B) holds for each Borel set B of X. Moreover, Misa Riesz

measure in X, since M is the associated measure of the Radon measure mini

defined by rh(B) = m(BC\X) for a Borel set B C X. Like M, M is not inner regular.

To see this, it is enough to show that Y is a Borel set in X. Indeed, Y is even

closed in X. Let U be an open neighbourhood of a point in X\Y with M(U) < 00.

Then U intersects F in a bounded set only, and consequently U\Y = U\I for a
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suitable bounded closed interval / in Y. But I is compact in Y and hence closed

in X. This shows that U\Y is open in X.

2. The author does not know of a separable, locally compact space which supports

a nonregular Riesz measure. It also remains open whether in the above Theorem

the assumption on the covering properties of X may be weakend, e.g. to 0-refinable

(see [1]).
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