A completeness theorem for trigonometric identities and various results on exponential functions
HTML articles powered by AMS MathViewer
- by Lou van den Dries
- Proc. Amer. Math. Soc. 96 (1986), 345-352
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818470-6
- PDF | Request permission
Abstract:
All valid identities in terms of variables, real constants, the arithmetic operations of addition and multiplication, and the trigonometric operations of sine and cosine are shown to be consequences of a few familiar identities and numerical facts. We also indicate how to decide whether $f$ eventually dominates $g$, for $f$ and $g$ from a certain class of exponential functions. Finally, we correct a statement from an earlier paper.References
- Bernd I. Dahn and Helmut Wolter, On the theory of exponential fields, Z. Math. Logik Grundlag. Math. 29 (1983), no. 5, 465–480. MR 716860, DOI 10.1002/malq.19830290902
- Reuben Gurevič, Transcendental numbers and eventual dominance of exponential functions, Bull. London Math. Soc. 18 (1986), no. 6, 560–570. MR 859947, DOI 10.1112/blms/18.6.560 G. H. Hardy, Orders of infinity, Cambridge Univ. Press, New York, 1910.
- C. Ward Henson and Lee A. Rubel, Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions, Trans. Amer. Math. Soc. 282 (1984), no. 1, 1–32. MR 728700, DOI 10.1090/S0002-9947-1984-0728700-X
- Hilbert Levitz, Calculation of an order type: an application of nonstandard methods, Z. Math. Logik Grundlagen Math. 28 (1982), no. 3, 219–228. MR 668008, DOI 10.1002/malq.19820281406
- Angus Macintyre, The laws of exponentiation, Model theory and arithmetic (Paris, 1979–1980) Lecture Notes in Math., vol. 890, Springer, Berlin-New York, 1981, pp. 185–197. MR 645003
- Daniel Richardson, Some undecidable problems involving elementary functions of a real variable, J. Symbolic Logic 33 (1968), 514–520. MR 239976, DOI 10.2307/2271358
- D. Richardson, Solution of the identity problem for integral exponential functions, Z. Math. Logik Grundlagen Math. 15 (1969), 333–340. MR 262068, DOI 10.1002/malq.19690152003
- Lou van den Dries, Exponential rings, exponential polynomials and exponential functions, Pacific J. Math. 113 (1984), no. 1, 51–66. MR 745594, DOI 10.2140/pjm.1984.113.51
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 345-352
- MSC: Primary 03B25; Secondary 03C05, 08B05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818470-6
- MathSciNet review: 818470