Abstract. Let X be an analytic space (e.g., a complete metric space). We prove that any point-countable \mathcal{F}_σ-set cover of X either has σ-discrete refinement, or else there is a compact subset of X not covered by any countable subfamily of the cover. It follows that any point-countable \mathcal{F}_σ-additive family in X has a σ-discrete refinement. This is used to show that any weakly F_σ-measurable multimap, defined on X and taking nonempty, closed and separable values in a complete metric space, has a selector of the first Baire class.

1. Introduction. A classical theorem due to Souslin states that any analytic subset of a complete separable metric space is either countable or contains an uncountable compact set (and thus a copy of the Cantor set) [11, §32]. For nonseparable complete metric spaces, this theorem remains true if we replace “countable” by “σ-discrete” (i.e., a countable union of closed discrete subsets). This was first shown by A. H. Stone [18] for Borel subsets, and then by A. G. El’kin [1] for analytic sets. An immediate corollary is that any subset of a complete metric space, all of whose subsets are analytic, must be σ-discrete.

A useful “set version” of this last result was obtained in [6]: Any disjoint family of subsets of a complete metric space X with the property that the union of every subfamily is analytic in X has a σ-discrete refinement\(^1\) (equivalently, is σ-discretely decomposable\(^2\)). This result was subsequently generalized to point-finite families [13] and to certain nonmetrizable spaces [5]. (See also [2 and 3] for consistency results along this line.) It is natural to ask whether there is a set version of El’kin’s result: Does each partition \mathcal{E} of a complete metric space into analytic subsets have the property that either \mathcal{E} has a σ-discrete refinement, or there is a compact set meeting uncountably many members of \mathcal{E}? The answer turns out to be negative even for G_δ-set partitions (see [14 and 18, §5]). However, G. Koumoullis [14] has recently obtained the following interesting result.
Theorem 1.1 [14]. Let \mathcal{E} be an F_σ-set partition of an analytic space X. Then either \mathcal{E} is σ-discretely decomposable, or X contains a compact set meeting uncountably many members of \mathcal{E}.

The primary purpose of this note is to give the following extension of Theorem 1.1.

Theorem 2.1. Let \mathcal{E} be a point-countable F_σ-set cover of an analytic space X. Then, either \mathcal{E} has a σ-discrete refinement, or X contains a compact subset that is not covered by any countable subfamily of \mathcal{E}.

Theorem 2.1 implies Theorem 1.1, since a disjoint family having a σ-discrete refinement is easily seen to be σ-discretely decomposable. Note also that the two possible properties of \mathcal{E} in Theorem 2.1 are mutually exclusive: For if \mathcal{E} has a σ-discrete refinement and C is any compact subset of X, then C meets at most countably many members of the refinement, and so is covered by some countable subfamily of \mathcal{E}. Further, we note that Theorem 2.1 cannot be sharpened by replacing “σ-discrete refinement” with “σ-discretely decomposable”: Hausdorff [12] has shown that \mathbb{R} is the union of a strictly decreasing sequence of F_σ-sets indexed by the countable ordinals. Such a family is point-countable but could not be σ-discretely decomposable, since this would imply the existence of an uncountable discrete subset of \mathbb{R}. That point-countability in Theorem 2.1 cannot be omitted follows from [17, Example 1.4].

If \mathcal{L} is any collection of sets, we say that a family of sets is \mathcal{L}-additive if the union of each subfamily belongs to \mathcal{L}. In §3 we prove the following consequence of Theorem 2.1.

Theorem 3.3. Let X be an analytic space. Then every point-countable F_σ-additive family of subsets of X has a σ-discrete refinement.

In contrast to the situation with Theorem 2.1, Theorem 3.3 is believed to hold for Borel sets of arbitrary class, although no proof is known even for G_δ-additive families. R. Pol [17] has shown that a point-countable (extended) Borel-additive family in an analytic space has a σ-discrete refinement, provided the members of the family have weight at most \aleph_1. Theorem 3.3 lends support to the conjecture that the weight restriction can be omitted. Under additional axioms of set theory this holds true even for arbitrary metric spaces (see [3, §4]).

We conclude with an application of Theorem 3.3 to the study of measurable selections by proving the following.

Theorem 4.1. Let T be a regular analytic space, X a metric space, and $F: T \to X$ a multimap having nonempty, separable and ρ-complete values, where ρ is a metric for

3 Analytic spaces are defined in §2.

4 A collection is point-countable if no point belongs to more than countably many members of the collection.
X. Assume that F is weakly F_σ-measurable; i.e., for each open U in X,

$$F^{-1}(U) = \{ t \in T: F(t) \cap U \neq \emptyset \}$$

is an F_σ-set of T. Then F has a selector of the first class (i.e., there is a map $f: T \to X$ such that $f(t) \in F(t)$, for all $t \in T$, and $f^{-1}(U)$ is an F_σ-set of T for all open sets U of X).

2. Analytic spaces and the proof of Theorem 2.1. By an analytic space we mean any Hausdorff space X that is a continuous, base-σ-discrete image of a complete metric space. A map $f: Z \to X$ is base-σ-discrete [16] if to each discrete family \mathcal{A} in Z there corresponds a σ-discrete family \mathcal{B} in X such that $f(A)$ is the union of some subfamily of \mathcal{B} for each A in \mathcal{A} (\mathcal{B} is said to be a base for $\{ f(A): A \in \mathcal{A} \}$). It is easy to see that any (Hausdorff) continuous image of a complete separable metric space is an analytic space (discrete families are countable). Also, any analytic subset of a complete metric space is an analytic space [9].

Proof of Theorem 2.1. We first consider the case when X has a complete metric d. Let F denote the largest closed subset of X such that no nonempty open subset of F is covered by countably many sets from \mathcal{E}. The existence of F follows from [19, Theorem 1] where F is called the “non-locally-P kernel of X”, P being the collection of all subsets of X which are covered by countably many sets from \mathcal{E}. If $F = \emptyset$, then by [19, Theorem 4'] X is the union of a σ-discrete family of closed sets each of which is covered by countably many sets from \mathcal{E}. Clearly, this yields a σ-discrete refinement of \mathcal{E}. Assuming $F \neq \emptyset$, we now construct a compact subset of X that is not covered by any countable subfamily of \mathcal{E}.

Let S denote the set of all finite sequences of natural numbers (including \emptyset), and define $\|s\| = 0$, and

$$\|s\| = \sum_{i=1}^{n} s_i, \quad \text{where} \ s = (s_1, \ldots, s_n) \in S.$$

For $s \in S$, $l(s)$ denotes the length of s. For each $s \in S$ we now define by induction on $l(s)$ points $x_s \in F$ and sets $E_s \in \mathcal{E}$ satisfying the following:

(i) $x_s \in E_s$;

(ii) if $l(r) < l(s)$ and $x_r \in E \in \mathcal{E}$, then $x_s \not\in E$;

(iii) if $s = (t, n)$ for some $t \in S$, then $d(x_{nt}, x_s) < 1/2^\|s\|$.

Choose $x_\emptyset \in F$ arbitrarily. Suppose x_s and E_s are known for all $s \in S$ with $l(s) \leq m$ for some $m \geq 0$. Given $s = (t, n)$ of length $m + 1$, let B be the basic neighborhood about x_t of d-radius $1/2^\|s\|$, and let

$$\mathcal{E}_s = \{ E \in \mathcal{E}: x_s \in E \text{ for some } r \text{ with } l(r) < l(s) \}.$$

Since \mathcal{E}_s is countable and $x_s \in F$, $B \cap F - \bigcup \mathcal{E}_s$ is not empty, so there is some $E_s \in \mathcal{E} - \mathcal{E}_s$ and some point $x_s \in B \cap F \cap E_s$. Properties (i)-(iii) are clearly satisfied by x_s and E_s.
We let $Q = \{ x_s : s \in S \}$. Property (iii) above ensures that Q is d-totally bounded, and so $K = \overline{\mathcal{X} Q}$ is compact. Now, for each $E \in \mathcal{E}$, the interior of $E \cap K$ relative to K must be empty; otherwise, by the denseness of Q and since $x_{(s,n)}$ converges to x_s, we would have both x_s and $x_{(s,n)}$ belonging to E, for some s and n, in contradiction with (ii) above. Since $E \cap K$ is also an F_σ-set in K, this implies that each $E \cap K$ is of first category in K. Since K is a Baire space, it follows that K cannot be covered by countably many sets from \mathcal{E}. This completes the proof in the case when X is completely metrizable.

If X is analytic, then we can find a complete metric space Z and a continuous surjection $f : Z \to X$ with the property that the image of any σ-discrete family in Z has a σ-discrete base (and hence refinement) relative to X. Now $\{ f^{-1}(E) : E \in \mathcal{E} \}$ is a point-countable cover of Z by F_σ-sets, and so must either have a σ-discrete refinement, or else Z contains a compact set C not covered by countably many sets of the form $f^{-1}(E)$, $E \in \mathcal{E}$. But then, by the properties of f, \mathcal{E} either has a σ-discrete refinement, or the compact set $f(C)$ exists and is not covered by any countable subfamily of \mathcal{E}. □

We remark that the above proof makes use of several techniques suggested by [14], some of which G. Koumoullis attributes to D. H. Fremlin. □

3. Weakly discrete and extended Borel-additive families. Let \mathcal{E} be a family of subsets of X. Following R. Pol [17] we say that $A \subseteq X$ is \mathcal{E}-discrete provided, for each $a \in A$, there is an $E_a \in \mathcal{E}$ satisfying $E_a \cap A = \{a\}$; if X is a topological space, we say that \mathcal{E} is weakly discrete if every \mathcal{E}-discrete set is a σ-discrete set in X. Our interest in weakly discrete families stems from the following.

3.1 Lemma. If \mathcal{E} is a point-countable weakly discrete family of subsets of a space X and L is a Lindelöf subspace of X, then $L \cap (\bigcup \mathcal{E})$ is covered by a countable subfamily of \mathcal{E}.

Proof. Suppose $L \cap (\bigcup \mathcal{E})$ is not covered by any countable subfamily of \mathcal{E}. Then, by induction over the countable ordinals, we can easily define a set $A = \{ x_\alpha : \alpha < \omega_1 \}$ contained in L such that, for all $\beta < \alpha$, if $x_\beta \in E \in \mathcal{E}$, then $x_\alpha \notin E$. Then for any $E_\alpha \in \mathcal{E}$ with $x_\alpha \in E_\alpha$, we have $A \cap E_\alpha = \{ x_\alpha \}$. Thus A is \mathcal{E}-discrete, and so A can be written as a countable union of closed discrete subsets of X. But this implies that L has an uncountable closed discrete subset, contradicting the fact that L is Lindelöf. □

By the extended Borel sets of a topological space X we mean the smallest σ-algebra of subsets of X which contains the open sets and is closed to the operation of discrete union [9]. By a Souslin set of X we mean, as usual, a subset of X obtained by applying the Souslin operation to the closed sets of X. For an analytic space X it can be shown that the extended Borel sets coincide with the family of all subsets A of X such that A and $X - A$ are Souslin sets of X (see, e.g., [10]).

I would like to thank Professor G. Koumoullis for providing a preprint of [14].
We now prove a slight refinement of a result due to R. Pol in the metrizable case \[17\], although the proof given here is considerably less technical.

Theorem 3.2. Let \(X \) be an analytic space, and let \(\mathcal{E} \) be an extended Borel-additive family of subsets of \(X \). Then \(\mathcal{E} \) is weakly discrete.

Proof. First assume that \(X \) is a complete metric space. Let \(A \subset X \) be such that, for each \(a \in A \), \(A \cap E_a = \{a\} \) for some \(E_a \in \mathcal{E} \). For any nonempty subset \(B \) of \(A \), we have

\[
B = A \cap \left(\bigcup_{b \in B} E_b \right),
\]

so \(B \) is a Souslin set relative to \(A \). Thus, if we can show that \(A \) is a Souslin set in \(X \), then \(A \) will be an analytic metric space all of whose subsets are analytic, and hence a \(\sigma \)-discrete set by the theorem of El'kin. Since

\[
A = \bigcup_{a \in A} E_a - \bigcup_{a \in A} E_a \cap (X - \{a\}),
\]

we need only show that the set \(C = \bigcup_{a \in A} E_a \cap (X - \{a\}) \) is extended Borel in \(X \). Since \(X \) is metrizable, let \(\bigcup_{n \in \mathbb{N}} \mathcal{B}_n \) be an open base for \(X \) with each \(\mathcal{B}_n \) a discrete family in \(X \). For each \(B \in \bigcup_{n \in \mathbb{N}} \mathcal{B}_n \) define

\[
E_B = \bigcup \{ E_a : a \in A \text{ and } B \subset X - \{a\} \},
\]

and note that

\[
C = \bigcup_n \bigcup_{B \in \mathcal{B}_n} E_B \cap B.
\]

Since \(\{ E_B \cap B : B \in \mathcal{B}_n \} \) is a discrete family of extended Borel sets for each \(n \), it follows that \(C \) is extended Borel. This proves that \(\mathcal{E} \) is weakly discrete when \(X \) is completely metrizable.

For \(X \) an analytic space, let \(Z \) be a complete metric space, and let \(f : Z \to X \) be a continuous, base-\(\sigma \)-discrete surjection. It is clear that

\[
f^{-1}(\mathcal{E}) = \{ f^{-1}(E) : E \in \mathcal{E} \}
\]

is an extended Borel-additive family in \(Z \). Now let \(A \subset X \) and \(E_a \) be as before, and let \(Z_A = \{ z_a : a \in A \} \) be such that \(z_a \in f^{-1}(a) \) for each \(a \in A \). Then \(Z_A \) is \(f^{-1}(\mathcal{E}) \)-discrete, and thus a \(\sigma \)-discrete set by the above. But then \(A = f(Z_A) \) is \(\sigma \)-discrete, since \(f \) is a base-\(\sigma \)-discrete map.

Proof of Theorem 3.3. Let \(\mathcal{E} \) be a point-countable, \(F_\alpha \)-additive family of subsets of the analytic space \(X \), and let \(Y = \bigcup \mathcal{E} \). Then \(Y \) is an analytic space, and \(\mathcal{E} \) is a weakly discrete family in \(X \) by Theorem 3.2. In view of Lemma 3.1 and Theorem 2.1, it follows that \(\mathcal{E} \) must have a refinement \(\mathcal{R} \) that is \(\sigma \)-discrete relative to \(Y \). Since \(Y \) is an \(F_\alpha \)-set in \(X \), \(\mathcal{R} \) is easily seen to have a \(\sigma \)-discrete refinement relative to \(X \).

\[\square\]

4. Proof of Theorem 4.1. For \(n = 1, 2, \ldots \), let \(\mathcal{U}_n \) be a locally finite cover of \(X \) by open sets having \(\rho \)-diameter \(< 1/n \). Since each separable subset of \(X \) can meet at most countably many members of a locally finite family, our assumptions imply that
\{ F^{-1}(U) : U \in \mathcal{U}_1 \} is a point-countable F_σ-additive cover of T, and so has a σ-discrete refinement \mathcal{M}. We may assume that \mathcal{M} is the union of $\mathcal{M}_m (m = 1, 2, \ldots)$, where each \mathcal{M}_m is a discrete family of F_σ-sets in T. Then $\mathcal{M}_m = \bigcup \mathcal{M}_m$ is an F_σ-set of T for each m, and, applying the countable reduction principle [15, p. 350], there exists a sequence $\{ H_m \}_{m \geq 1}$ of pairwise disjoint F_σ-sets such that

$$H_m \subset M_m \quad \text{and} \quad T = \bigcup_{m=1}^{\infty} H_m.$$

(Here we have used the fact that in a regular analytic space, open sets are F_σ-sets, so the above reduction property is valid.) It follows that

$$\mathcal{M} = \{ M \cap H_m : M \in \mathcal{M}_m, m = 1, 2, \ldots \}$$

is a disjoint, σ-discrete, F_σ-additive refinement of $\{ F^{-1}(U) : U \in \mathcal{U}_1 \}$. For each $H \in \mathcal{M}$ choose some $U_H \in \mathcal{U}_1$ such that $H \subset F^{-1}(U_H)$, and let $H(U) = \bigcup \{ H : U_H = U \}$ for each $U \in \mathcal{U}_1$. Then the family $\{ H(U) : U \in \mathcal{U}_1 \}$ is also a disjoint, σ-discrete, F_σ-additive cover of T and $H(U) \subset F^{-1}(U)$ for each $U \in \mathcal{U}_1$. Now define the multimap $F_1 : T \to X$ by

$$F_1(t) = F(t) \cap U \quad \text{iff} \quad t \in H(U), \quad U \in \mathcal{U}_1.$$

For any open $V \subset X$, one has

$$F^{-1}_1(V) = \bigcup \{ F^{-1}(U \cap V) \cap H(U) : U \in \mathcal{U}_1 \},$$

and this is an F_σ-set of T as the union of a σ-discrete collection of F_σ-sets. Thus F_1 is weakly F_σ-measurable and has nonempty separable values. It follows that $\{ F_1^{-1}(U) : U \in \mathcal{U}_2 \}$ is a point-countable F_σ-additive cover of T, and we may apply the above argument again to obtain a family $\{ K(U) : U \in \mathcal{U}_2 \}$ that is disjoint, σ-discrete, F_σ-additive, covers T, and is such that $K(U) \subset F_1^{-1}(U)$ for each $U \in \mathcal{U}_2$. We proceed to define $F_2 : T \to X$ by

$$F_2(t) = F_1(t) \cap U \quad \text{iff} \quad t \in K(U), \quad U \in \mathcal{U}_2,$$

and observe as before that F_2 is weakly F_σ-measurable and has nonempty separable values. In this way we generate a sequence of weakly F_σ-measurable multimaps $F_n : T \to X$ satisfying $F(t) \supset F_1(t) \supset \cdots \supset F_n(t) \supset \cdots$, and $F_n(t)$ is nonempty and has ρ-diameter $< 1/n$.

By the ρ-completeness of the values of F, we can define a map $f : T \to X$ by taking $f(t)$ to be the unique member of $\bigcap_n F_n(t)$. Now, for any open $U \subset X$, we have

$$f^{-1}(U) = \bigcup_{n=1}^{\infty} F_n^{-1}(U_n),$$

where $U_n = \{ x \in U : \rho\text{-dist}(x, X - U) > 1/n \}$. Thus $f^{-1}(U)$ is an F_σ-set of T, proving f is a selector for F of the first class. \qed

Remark. For recent measurable selection theorems along lines similar to the above, see [4 and 8].

We conclude with an example which shows the assumption that F has separable values in Theorem 4.1 cannot be omitted, even when T is completely metrizable.
Example. There exists a weakly F_σ-measurable multimap F from the Baire space $B(\omega_1)$ to the space ω_1 with the discrete topology, having no extended Borel measurable selector.

Proof. Let $B(\omega_1) = \omega_1^\mathbb{N}$ with the product topology, and define, for each $\alpha < \omega_1$,

$$S_\alpha = \{ x \in B(\omega_1) : x(n) \leq \alpha \text{ for all } n \in \mathbb{N} \}.$$

It is easy to check that $\{ S_\alpha : \alpha < \omega_1 \}$ is an increasing, F_σ-additive cover of $B(\omega_1)$ by closed, separable subsets. Thus, defining $F : B(\omega_1) \to \omega_1$ by

$$F(x) = \{ \alpha < \omega_1 : x \in S_\alpha \},$$

we have $F^{-1}(\alpha) = S_\alpha$, for each α, and so F is weakly F_σ-measurable. Now, if f were an extended Borel measurable selector for F, then $\{ f^{-1}(\alpha) : \alpha < \omega_1 \}$ would be a disjoint extended Borel-additive family in $B(\omega_1)$, and so σ-discrete by [6, Theorem 2]. Since this family refines $\{ S_\alpha : \alpha < \omega_1 \}$, it would follow that the latter has a σ-discrete refinement and, hence, that $B(\omega_1)$ can be covered by a σ-discrete collection of separable subsets. But this would imply that $B(\omega_1)$ is σ-locally of weight $< \omega_1$, in contradiction to a theorem of A. H. Stone [20, 2.1(7)]. □

References

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06268