$F_ \sigma$-set covers of analytic spaces and first class selectors
HTML articles powered by AMS MathViewer
- by R. W. Hansell
- Proc. Amer. Math. Soc. 96 (1986), 365-371
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818473-1
- PDF | Request permission
Abstract:
Let $X$ be an analytic space (e.g., a complete metric space). We prove that any point-countable ${F_\sigma }$-set cover of $X$ either has $\sigma$-discrete refinement, or else there is a compact subset of $X$ not covered by any countable subfamily of the cover. It follows that any point-countable ${F_\sigma }$-additive family in $X$ has a $\sigma$-discrete refinement. This is used to show that any weakly ${F_\sigma }$-measurable multimap, defined on $X$ and taking nonempty, closed and separable values in a complete metric space, has a selector of the first Baire class.References
- A. G. El′kin, $A$-sets in complete metric spaces, Dokl. Akad. Nauk SSSR 175 (1967), 517–520 (Russian). MR 0214029
- William G. Fleissner, An axiom for nonseparable Borel theory, Trans. Amer. Math. Soc. 251 (1979), 309–328. MR 531982, DOI 10.1090/S0002-9947-1979-0531982-9
- William G. Fleissner, Roger W. Hansell, and Heikki J. K. Junnila, PMEA implies proposition $\textrm {P}$, Topology Appl. 13 (1982), no. 3, 255–262. MR 651508, DOI 10.1016/0166-8641(82)90034-7
- D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. (Rozprawy Mat.) 260 (1987), 116. MR 928693
- Zdeněk Frolík and Petr Holický, Decomposability of completely Suslin-additive families, Proc. Amer. Math. Soc. 82 (1981), no. 3, 359–365. MR 612719, DOI 10.1090/S0002-9939-1981-0612719-6
- R. W. Hansell, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), 145–169. MR 288228, DOI 10.1090/S0002-9947-1971-0288228-1
- R. W. Hansell, Generalized quotient maps that are inductively index-$\sigma$-discrete, Pacific J. Math. 117 (1985), no. 1, 99–119. MR 777439, DOI 10.2140/pjm.1985.117.99 —, A measurable selection and representation theorem in non-separable spaces, Measure Theory (Oberwolfach 1983, D. Kölzow and D. Maharam-Stone, eds.), Lecture Notes in Math., vol. 1089, Springer-Verlag, Berlin and New York, 1984.
- R. W. Hansell, On characterizing non-separable analytic and extended Borel sets as types of continuous images, Proc. London Math. Soc. (3) 28 (1974), 683–699. MR 362269, DOI 10.1112/plms/s3-28.4.683
- R. W. Hansell, J. E. Jayne, and C. A. Rogers, $K$-analytic sets, Mathematika 30 (1983), no. 2, 189–221 (1984). MR 737176, DOI 10.1112/S0025579300010524 F. Hausdorff, Mengenlehre, de Gruyter, Berlin, 1937; English transl., Chelsea, New York, 1957. —, Summen von ${\aleph _1}$ Mengen, Fund. Math. 26 (1936), 248.
- J. Kaniewski and R. Pol, Borel-measurable selectors for compact-valued mappings in the non-separable case, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), no. 10, 1043–1050 (English, with Russian summary). MR 410657
- George Koumoullis, Cantor sets in Prohorov spaces, Fund. Math. 124 (1984), no. 2, 155–161. MR 774507, DOI 10.4064/fm-124-2-155-161
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- E. Michael, On maps related to $\sigma$-locally finite and $\sigma$-discrete collections of sets, Pacific J. Math. 98 (1982), no. 1, 139–152. MR 644945, DOI 10.2140/pjm.1982.98.139
- Roman Pol, Note on decompositions of metrizable spaces. II, Fund. Math. 100 (1978), no. 2, 129–143. MR 494011, DOI 10.4064/fm-100-2-129-143
- A. H. Stone, On $\sigma$-discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655–666. MR 156789, DOI 10.2307/2373113
- A. H. Stone, Kernel constructions and Borel sets, Trans. Amer. Math. Soc. 107 (1963), 58–70; errata: 107 (1963), 558. MR 0151935, DOI 10.1090/S0002-9947-1963-0151935-0
- A. H. Stone, Non-separable Borel sets. II, General Topology and Appl. 2 (1972), 249–270. MR 312481, DOI 10.1016/0016-660X(72)90010-4
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 365-371
- MSC: Primary 54H05; Secondary 28A05, 54C65
- DOI: https://doi.org/10.1090/S0002-9939-1986-0818473-1
- MathSciNet review: 818473