A new characterization for $p$-local balanced projective groups
HTML articles powered by AMS MathViewer
- by Mark Lane PDF
- Proc. Amer. Math. Soc. 96 (1986), 379-386 Request permission
Abstract:
By introducing the notion of a ${\text {K}}$-nice submodule, we obtain a characterization of $p$-local balanced projectives perfectly analogous to the familiar third axiom of countability characterization of totally projective $p$-groups. We use this new characterization to prove that if a $p$-local group $G$ satisfies the third axiom of countability with respect to nice submodules and has a ${\text {K}}$-basis, then $G$ is a balanced projective.References
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869 P. Hill, On the classification of abelian groups, photocopied manuscript.
- Paul Hill, Isotype subgroups of totally projective groups, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 305–321. MR 645937
- Roger Hunter and Fred Richman, Global Warfield groups, Trans. Amer. Math. Soc. 266 (1981), no. 2, 555–572. MR 617551, DOI 10.1090/S0002-9947-1981-0617551-X
- Fred Richman, The constructive theory of $KT$-modules, Pacific J. Math. 61 (1975), no. 1, 263–274. MR 399069, DOI 10.2140/pjm.1975.61.263
- Fred Richman and Elbert A. Walker, Valuated groups, J. Algebra 56 (1979), no. 1, 145–167. MR 527162, DOI 10.1016/0021-8693(79)90330-2
- Elbert A. Walker, Ulm’s theorem for totally projective groups, Proc. Amer. Math. Soc. 37 (1973), 387–392. MR 311805, DOI 10.1090/S0002-9939-1973-0311805-3
- R. B. Warfield Jr., A classification theorem for abelian $p$-groups, Trans. Amer. Math. Soc. 210 (1975), 149–168. MR 372071, DOI 10.1090/S0002-9947-1975-0372071-2
- R. B. Warfield Jr., Classification theory of abelian groups. I. Balanced projectives, Trans. Amer. Math. Soc. 222 (1976), 33–63. MR 422455, DOI 10.1090/S0002-9947-1976-0422455-X
Additional Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 379-386
- MSC: Primary 20K21; Secondary 20K10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822423-1
- MathSciNet review: 822423