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EVERY CURVE ON A NONSINGULAR SURFACE
CAN BE DEFINED BY TWO EQUATIONS

M. BORATYÑSKI

ABSTRACT. Let R be a smooth two-dimensional affine algebra over an alge-

braically closed field, and let J be an unmixed ideal of height one in R. Then

there exist a,b in I such that rad(7) = rad(a,6).

Van der Waerden [6] has proved that every subvariety of an n-dimensional affine

variety can be defined by n+1 equations. Easy examples (for instance a nontorsion

point on a nonsingular affine curve) show that this is, in general, the best possible

result.

The aim of this note is to prove the statement of the title, which is an im-

provement of van der Waerden's theorem in a somewhat special case. Its algebraic

version, which we are going to prove, runs as follows:

THEOREM. Let R be a smooth two-dimensional affine algebra over an alge-

braically closed field, and let I be an unmixed ideal of height 1 of R. Then there

exists a,bG I such that rad/ = rad(a,b).

1. Preliminaries. In this section we briefly state some basic results about

Chern classes that we will use in what follows. For the details we refer to [3].

Let A" be a smooth variety over an algebraically closed field, and let A(X) =

©¿"o AZ(X) denote the Chow ring of X. Al(X) consists of rational equivalence

classes of codimension-i cycles of X.

For any /: X —► Y (Y smooth), one has the induced ring homomorphism

/* : A(Y) —► A(X). In particular, for any open subvariety U C X, there is an

induced map i* : A(X) —> A(U), where i denotes the inclusion. The kernel of i* is

generated by the cycles with support contained in X — U [2].

For any locally free sheaf 7 over X, one defines, for i > 0, the elements c¿(7) G

Al{X) such that c0{7) = 1 and c¿(J) = 0 for i > rkj. If rk 7 = 1, then a(7) is

equal to the image of 7 in A1(X) = PicX. In general, c\{7) = ci(/\ran 7). Let

0 —► 7' —► 7 —> 7" —► 0 be an exact sequence of locally free sheaves over X. Then

ck{7)=  £ *(?%(?").
i+j=k

In particular, c¿(7) = 0, for i > 0, if 7 is free.

Let J be a locally free sheaf of rank k. Suppose there exists a section of 7 whose

scheme of zeros is of codimension k. Then Ck{7) is represented by the corresponding

cycle of zeros.

Let Äbea smooth affine algebra over an algebraically closed field, and let X

denote the corresponding affine (smooth) variety. Then for any projective i?-module

Received by the editors August 1, 1983.
1980 Mathematics Subject Classification. Primary 13C05, 14C99, 14M07.

©1986 American Mathematical Society

0002-9939/86 $1.00 + $.25 per page

391



392 M. BORATYNSKI

P, one defines, for i > 0, Ci(P) = Ci(P) G Al(X), where P is the corresponding

locally free sheaf over X.

Let P and I be the projective R-modules of ranks 2 and 1, respectively. In what

follows we shall need the following formulas:

c1(P®I) = c1(P) + 2c1(I),

ca(P®/)=C2(P) + ci(P)ci(/) + c?(/).

One can easily obtain them by using the "splitting principle".

For the sake of completeness, following [1], we shall recall briefly the definition of

Al{X) in the affine case. Let R denote the coordinate ring of X, and let f¿ stand for

the free group generated by the prime ideals of R of ht i. For an equicodimensional

ideal I of R with ht I = i, we let [7] = £) length(fíp//p)p G P¿, with the summation

ranging over all minimal primes of I. By definition Al(X) = í¿/G¿, where G¿

denotes the subgroup of P¿ generated by [(q, /)] with q prime of height i — Í and

/ € R\q.

2. Proof of the Theorem. Let X = SpecR and U = SpecR - V(I). I is

a projective Ä-module, since R is regular. c\{I) G A2(X) and maps to zero in

A2(17). Therefore, Cj(7) can be represented by the cycle J3»=i ^mí> with m¿ being

the maximal ideals of R containing I. Suppose that fc¿ < 0 for 1 < i < s and

ki > 0 for s < i < í. Let g¿ be a minimal prime of 7 contained in m¿ for i =

1,..., s. Then, for /¿ 0 g¿ contained in sufficiently high powers of m¿ for 1 < i < s,

Ya=i ^imi + S¿=i[(9¿i/¿)] is an effective cycle. So we can assume that c\{I) is

represented by X^=i Kmi with fc¿ > 0. Let x¿,y¿ G m¿ generate (m¿)m., and let

Ji denote the m¿-primary component of (xi,yii). Then [J] = ]C»=i ^m« = ci(7),

where J = n¿=i 7¿- J is a locally complete intersection height 2 ideal of R. So by

[5] there exists an exact sequence 0—* R —> P —+J—>0 with P projective of rank

2. We have ci(P) = 0, since A2P ~ R and c2(P) = [7] = c\{I). After tensoring

the above exact sequence with I, we get the exact sequence

0^I^P®I-*J®I = JI^0.

I/JI ~ I~1/JI~1, since both modules are projective of rank 1 over R/J, which is

a 0-dimensional ring.

Let ^: /->/_1 bea lifting of this isomorphism, and let

0^       I       -2>     P®I    -f     J®I    =     JI     -♦     0

•p \ I

be the corresponding push-out diagram. From the definition of "push-out" we get

the exact sequence

Q-4i^r1®(p®i)->Q-+o.

Q is a projective i?-module of rank 2, since a is locally a homomorphism R A R2,

with (a, b) = J, and <p is locally a homomorphism R —► i?, with c comaximal to J.

Using the multiplicative property of Chern classes, the formula for the Chern

classes of P® I, and the facts that ci(P) = 0 and C2(P) = c2{I), one obtains, after

tedious calculations, that C\{Q) — 0 and C2(Q) = 0- It follows from [4] that Q is
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free. Thus, JI is generated by two elements. rad 7 = rad JI since the ideals m¿

contain I. Thus, there exist a,b G I such that rad I = rad(o, b) which completes

the proof of the Theorem.

REMARKS. 1. Every curve on a nonsingular surface can be defined by one

equation if and only if its class group is torsion.

2. One can wonder about possible generalization of the Theorem to a higher-

dimensional case. In particular, one can ask for which numbers d, n, with d < n,

can every (pure) d-codimensional Cohen-Macaulay subvariety of an n-dimensional

affine variety (over an algebraically closed field) be defined by n equations.

ADDED IN PROOF. After this paper was written N. Mohan Kumar showed the

following:

1. The Theorem holds true without the smoothness assumption on

R provided I is locally principal. One can easily deduce from this

that every locally complete intersection curve in an affine n-fold

over an algebraically closed field is set-theoretically defined by n

equations.

2. Every divisor on a smooth 3-fold over an algebraically closed field

is set-theoretically defined by 3 equations.

Both these results were generalized by M. P. Murthy who proved that every locally

principal ideal of a regular n-dimensional affine algebra R over an algebraically

closed field is generated up to radical by n elements provided n = dim 72 > 2.

G. Lyubeznik has proved that every locally complete intersection ideal of an n-

dimensional CM ring R is generated up to radical by n elements if 1 < ht I < n.

In the meantime the author was able to prove the following: Let I be a locally

principal ideal of a two-dimensional affine algebra R over an algebraically closed

field. Then the ideal (I, x) with x G 72 is generated up to radical by two elements

provided (I,x) = J ■ K with J-locally principal and K = 72 or ht K — 2. That
assumption holds automatically if x G 7 or if 72 is regular. This suggests that

some of the above-mentioned results may carry over to certain ideals which are not

necessarily unmixed.
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