Every curve on a nonsingular surface can be defined by two equations
HTML articles powered by AMS MathViewer
- by M. Boratyński
- Proc. Amer. Math. Soc. 96 (1986), 391-393
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822425-5
- PDF | Request permission
Abstract:
Let $R$ be a smooth two-dimensional affine algebra over an algebraically closed field, and let $I$ be an unmixed ideal of height one in $R$. Then there exist $a,b$ in $I$ such that ${\text {rad}}(I) = {\text {rad}}(a,b)$.References
- Luther Claborn and Robert Fossum, Generalizations of the notion of class group, Illinois J. Math. 12 (1968), 228–253. MR 224601
- William Fulton, Rational equivalence on singular varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 147–167. MR 404257, DOI 10.1007/BF02684300
- Alexander Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137–154 (French). MR 116023, DOI 10.24033/bsmf.1501
- M. Pavaman Murthy and Richard G. Swan, Vector bundles over affine surfaces, Invent. Math. 36 (1976), 125–165. MR 439842, DOI 10.1007/BF01390007 J. P. Serre, Sur les modules projectives, Sem. Dubreil-Pisot, 1960/1961. B. L. van der Waerden, Review, Zbl. Math. 24 (1941), 276.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 391-393
- MSC: Primary 14M10; Secondary 14C10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822425-5
- MathSciNet review: 822425