REMARKS ON PETTIS INTEGRABILITY

R. HUFF

ABSTRACT. Characterizations of Pettis integrability, including the Geitz-Talagrand core theorem, are derived in an easy way.

The purpose of this note is to point out how a folklore result (Proposition 1) can be made the basis for relatively easy proofs of some recent results about Pettis integrability. Our notation follows Dunford and Schwartz [1].

Let $(\Omega, \Sigma, \lambda)$ be a complete probability space, and let X be a Banach space with continuous dual X^*. A function $f: \Omega \to X$ is Dunford integrable provided the composition $T(x^*) = x^* f$ is in $L^1(\lambda)$ for every x^* in X^*. In this case, it follows (from the closed graph theorem) that $T: X^* \to L^1(\lambda)$ is a bounded linear operator. Hence, for every g in $L^\infty(\lambda)$, the map φ_g, defined by

$$\varphi_g(x^*) = \int g T(x^*) \, d\lambda,$$

is in X^{**}. In particular, for each E in Σ, $\nu(E) = \int_E f \, d\lambda$, defined to equal φ_{XE} and called the Dunford integral of f over E, is an element of X^{**}.

The function $\nu: \Sigma \to X^{**}$ is not necessarily countably additive. It can be shown that ν is countably additive if and only if T is a weakly compact operator if and only if $\{x^* f: \|x^*\| \leq 1\}$ is uniformly integrable in $L^1(\lambda)$ [1, pp. 319, 485, 292]. These conditions are automatically satisfied if f has bounded range.

Let \hat{X} denote the natural image of X in X^{**}. The function f is said to be Pettis integrable if and only if for every E in Σ, $\nu(E)$ is in \hat{X} (equivalently, $\nu(E)$ is weak* continuous on X^*). The following proposition is essentially a reformulation of the definition.

PROPOSITION 1. A Dunford integrable function f is Pettis integrable if and only if the operator $T: X^* \to L^1(\lambda)$ is weak*-to-weak continuous.

In particular, if f is Pettis integrable then T is necessarily a weakly compact operator.

PROOF. (\Leftarrow) is clear.

(\Rightarrow) If f is Pettis integrable, then for each simple function g in $L^\infty(\lambda)$, φ_g is weak* continuous on X^*. By approximation, φ_g is weak* continuous for every g in $L^\infty(\lambda)$. \hfill \Box

Therefore, to study Pettis integrability one studies the action of T on weak* neighborhoods in X^*. If F is a finite set in X, and $\varepsilon > 0$, let

$$K(F, \varepsilon) = \{x^* \in X^*: \|x^*\| \leq 1 \text{ and } x^*(x) \leq \varepsilon \text{ for every } x \in F\}.$$
LEMMA 2. If f is Dunford integrable, then for all F, ε the set \(T(\mathcal{K}(F, \varepsilon)) \) is closed and convex in \(L^1(\lambda) \).

PROOF. Convexity is clear. Suppose g is in the closure of \(T(\mathcal{K}(F, \varepsilon)) \), and choose \(x^n_\varepsilon \) in \(\mathcal{K}(F, \varepsilon) \) with \(x^n_\varepsilon f \to g \) a.e. Let \(x^* \) be a weak* cluster point of \((x^n_\varepsilon)_n \). Then \(x^* \) is in \(\mathcal{K}(F, \varepsilon) \) and \(g = x^* f \) a.e. □

The following reformulation of Proposition 1 was derived from ideas in proofs due to M. Talagrand (see Sentilles and Wheeler [5]).

PROPOSITION 3. If f is Dunford integrable, then the following are equivalent:
1. f is Pettis integrable;
2. T is a weakly compact operator and

\[\{0\} = \bigcap \{T(\mathcal{K}(F, \varepsilon))|F \subset X, F \text{ finite, and } \varepsilon > 0\}. \]

PROOF. (1) \(\Rightarrow \) (2) If f is Pettis integrable, then T is weakly compact. Suppose g is in \(\{T(\mathcal{K}(F, \varepsilon))|F \subset X, F \text{ finite} \} \). For each \((F, \varepsilon) \) choose \(x^*_{F, \varepsilon} \) in \(\mathcal{K}(F, \varepsilon) \) so that \(g = T(x^*_{F, \varepsilon}) \). Note that \((x^*_{F, \varepsilon})_{(F, \varepsilon)} \) is naturally a net in \(X^* \) which converges weak* to 0. Hence, \(g = T(x^*_{F, \varepsilon}) \to 0 \).

(2) \(\Rightarrow \) (1) Let \(B^* = \{x^*||x^*| \leq 1\} \). Suppose a net \((x^*_\alpha) \) in \((1/2)B^* \) converges weak* to \(x^* \). Then \((x^*_\alpha - x^*) \) is in \(B^* \) and for all \((F, \varepsilon) \) it is eventually in \(\mathcal{K}(F, \varepsilon) \). Let \(g \) be any weak cluster point of \((T(x^*_\alpha - x^*)) \). Then \(g \) is in \(\bigcap_{(F, \varepsilon)} T(\mathcal{K}(F, \varepsilon)) \), so \(g = 0 \). Thus \(T(x^*_\alpha) \to T(x^*) \) weakly in \(L^1(\lambda) \). It follows that T is weak*-to-weak continuous. □

Say that a weakly measurable function \(f: \Omega \to X \) is separable-like provided there exists a separable subspace D of X such that for every \(x^* \) in \(X^* \),

\[x^* \chi_D f = x^* f \] a.e. (\(\lambda \)).

(That is, as far as \(x^* \) is concerned, \(f \) takes almost all its range in \(D \).) In particular, simple functions are separable-like. If \((\Omega, \Sigma, \mu) \) is a separable measure space, then every Dunford integrable function is automatically separable-like.

COROLLARY 4. Suppose f is Dunford integrable and T is weakly compact. If f is separable-like, then it is Pettis integrable.

PROOF. Let \((x_n) \) be dense in D. Let g be in \(\bigcap_{(F, \varepsilon)} T(\mathcal{K}(F, \varepsilon)) \). We must show that \(g = 0 \) a.e.

For each \(n \), choose \(x^n_\varepsilon \) in \(\mathcal{K}(\{x_i\}_{i=1}, 1/n) \) so that \(g = x^n_\varepsilon f \) a.e. Now choose a fixed null set E so that for every \(n \), \(g = x^n_\varepsilon f \) off E. Let \((x^*_n)_n \) cluster weak* at \(x^* \). Then \(g = x^* f \) off E, while \(x^* = 0 \) on D. Hence,

\[g = x^* f = x^* \chi_D f = 0 \] a.e. □

If \((\Omega, \Sigma, \mu) \) is a perfect measure space, Geitz [3] shows that every Pettis integrable f is separable-like. Thus, the converse of the Corollary holds for perfect measure spaces.

The next corollary is obvious.

COROLLARY 5. Suppose f is Dunford integrable, T is weakly compact, and there is a sequence \((f_n) \) of separable-like integrable functions such that for each \(x^* \), \((x^* f_n) \) converges a.e. to \(x^* f \). Then f is Pettis integrable.
If \(f: \Omega \to X \) is Dunford integrable and \(T \) is weakly compact, then \(f \) is Pettis integrable if and only if

\[
\int_E f \, d\lambda = \varnothing \quad \text{if} \quad \lambda(E) = 0.
\]

PROOF. (\(\Rightarrow \)) If \(f \) is Pettis integrable, then by the separation theorem the integral \(\int_E f \, d\lambda \) is in \(\varnothing \).

(\(\Leftarrow \)) Suppose \((*) \) holds and \(g \) is in \(\bigcap_{(F,\varepsilon)} T(\mathcal{K}(F,\varepsilon)) \), with \(g = x^* f \) for some \(x^* \) in \(X^* \). If \(g \) is not identically zero a.e., then there exists \(x \) in \(\varnothing \) with \(x^*(x) \neq 0 \).

For each \(n \), choose \(x^*_n \) in \(\mathcal{K}(\{x\}, 1/n) \) with \(g = x^*_n f \) a.e. Choose a fixed null set \(E \) so that for every \(n \), \(g = x^*_n f \) off \(E \). Let \(y^* \) be a weak* cluster point of \((x^*_n) \). Then \(y^* f = g \) a.e., and \(y^*(x) = 0 \).

Let \(z^* = x^* - y^* \). Then \(z^* f = 0 \) a.e. while \(z^*(x) \neq 0 \), contradicting the lemma.

REFERENCES

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802