## Uniformly persistent systems

HTML articles powered by AMS MathViewer

- by Geoffrey Butler, H. I. Freedman and Paul Waltman PDF
- Proc. Amer. Math. Soc.
**96**(1986), 425-430 Request permission

## Abstract:

Conditions are given under which weak persistence of a dynamical system with respect to the boundary of a given set implies uniform persistence.## References

- N. P. Bhatia and G. P. Szegő,
*Dynamical systems: Stability theory and applications*, Lecture Notes in Mathematics, No. 35, Springer-Verlag, Berlin-New York, 1967. MR**0219843** - Herbert I. Freedman,
*Deterministic mathematical models in population ecology*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 57, Marcel Dekker, Inc., New York, 1980. MR**586941** - H. I. Freedman and Paul Waltman,
*Persistence in models of three interacting predator-prey populations*, Math. Biosci.**68**(1984), no. 2, 213–231. MR**738903**, DOI 10.1016/0025-5564(84)90032-4 - H. I. Freedman and Paul Waltman,
*Persistence in a model of three competitive populations*, Math. Biosci.**73**(1985), no. 1, 89–101. MR**779763**, DOI 10.1016/0025-5564(85)90078-1 - Thomas C. Gard,
*Persistence in food chains with general interactions*, Math. Biosci.**51**(1980), no. 1-2, 165–174. MR**605583**, DOI 10.1016/0025-5564(80)90096-6 - Thomas C. Gard,
*Top predator persistence in differential equation models of food chains: the effects of omnivory and external forcing of lower trophic levels*, J. Math. Biol.**14**(1982), no. 3, 285–299. MR**666805**, DOI 10.1007/BF00275394 - Thomas C. Gard and Thomas G. Hallam,
*Persistence in food webs. I. Lotka-Volterra food chains*, Bull. Math. Biol.**41**(1979), no. 6, 877–891. MR**640001**, DOI 10.1016/S0092-8240(79)80024-5 - J. K. Hale and A. S. Somolinos,
*Competition for fluctuating nutrient*, J. Math. Biol.**18**(1983), no. 3, 255–280. MR**729974**, DOI 10.1007/BF00276091 - Morris W. Hirsch and Charles C. Pugh,
*Stable manifolds and hyperbolic sets*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR**0271991** - Josef Hofbauer,
*A general cooperation theorem for hypercycles*, Monatsh. Math.**91**(1981), no. 3, 233–240. MR**619966**, DOI 10.1007/BF01301790 - S. B. Hsu, S. P. Hubbell, and Paul Waltman,
*Competing predators*, SIAM J. Appl. Math.**35**(1978), no. 4, 617–625. MR**512172**, DOI 10.1137/0135051 - V. Hutson and G. T. Vickers,
*A criterion for permanent coexistence of species, with an application to a two-prey one-predator system*, Math. Biosci.**63**(1983), no. 2, 253–269. MR**695730**, DOI 10.1016/0025-5564(82)90042-6 - Robert M. May and Warren J. Leonard,
*Nonlinear aspects of competition between three species*, SIAM J. Appl. Math.**29**(1975), no. 2, 243–253. MR**392035**, DOI 10.1137/0129022 - Zbigniew Nitecki,
*Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms*, The M.I.T. Press, Cambridge, Mass.-London, 1971. MR**0649788** - P. Schuster, K. Sigmund, and R. Wolff,
*On $\omega$-limits for competition between three species*, SIAM J. Appl. Math.**37**(1979), no. 1, 49–54. MR**536302**, DOI 10.1137/0137004 - S. Smale,
*Differentiable dynamical systems*, Bull. Amer. Math. Soc.**73**(1967), 747–817. MR**228014**, DOI 10.1090/S0002-9904-1967-11798-1 - Gordon Thomas Whyburn,
*Analytic Topology*, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR**0007095**

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**96**(1986), 425-430 - MSC: Primary 58F25; Secondary 34C15, 92A15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822433-4
- MathSciNet review: 822433