A partial integration formula for product integrals of unbounded operator-valued functions
HTML articles powered by AMS MathViewer
- by Rhonda J. Hughes
- Proc. Amer. Math. Soc. 96 (1986), 455-461
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822439-5
- PDF | Request permission
Abstract:
The partial integration formula for product integrals \[ \prod \limits _y^x {{e^{(A(s) + B(s))ds}} = } \prod \limits _y^x {{e^{A(s)ds}}} \prod \limits _y^x {\exp } \left ( {\left ( {\prod \limits _s^y {{e^{A(u)du}}} B(s)\prod \limits _y^s {{e^{A(u)du}}} } \right )ds} \right ),\] of which the Trotter product formula is a consequence, is established for a wide class of unbounded operator-valued functions $A(s),B(s)$.References
- Paul R. Chernoff, Note on product formulas for operator semigroups, J. Functional Analysis 2 (1968), 238–242. MR 0231238, DOI 10.1016/0022-1236(68)90020-7
- John D. Dollard and Charles N. Friedman, On strong product integration, J. Functional Analysis 28 (1978), no. 3, 309–354. MR 492656, DOI 10.1016/0022-1236(78)90091-5
- John D. Dollard and Charles N. Friedman, Product integration with applications to differential equations, Encyclopedia of Mathematics and its Applications, vol. 10, Addison-Wesley Publishing Co., Reading, Mass., 1979. With a foreword by Felix E. Browder; With an appendix by P. R. Masani. MR 552941
- William G. Faris, Product formulas for perturbations of linear propagators, J. Functional Analysis 1 (1967), 93–108. MR 0222711, DOI 10.1016/0022-1236(67)90028-6
- Tosio Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208–234. MR 58861, DOI 10.2969/jmsj/00520208
- Tosio Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970), 241–258. MR 279626
- John D. Dollard and Charles N. Friedman, Product integration with applications to differential equations, Encyclopedia of Mathematics and its Applications, vol. 10, Addison-Wesley Publishing Co., Reading, Mass., 1979. With a foreword by Felix E. Browder; With an appendix by P. R. Masani. MR 552941
- P. Masani, Multiplicative partial integration and the Trotter product formula, Adv. in Math. 40 (1981), no. 1, 1–9. MR 616158, DOI 10.1016/0001-8708(81)90030-X
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
- Kôsaku Yosida, Functional analysis, 5th ed., Grundlehren der Mathematischen Wissenschaften, Band 123, Springer-Verlag, Berlin-New York, 1978. MR 0500055, DOI 10.1007/978-3-642-96439-8
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 455-461
- MSC: Primary 47D05; Secondary 34G10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822439-5
- MathSciNet review: 822439