Invariant subspaces for algebras of subnormal operators
HTML articles powered by AMS MathViewer
- by James E. Thomson
- Proc. Amer. Math. Soc. 96 (1986), 462-464
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822440-1
- PDF | Request permission
Abstract:
Every rationally cyclic subnormal operator has a hyperinvariant subspace.References
- James E. Brennan, Invariant subspaces and rational approximation, J. Functional Analysis 7 (1971), 285–310. MR 0423059, DOI 10.1016/0022-1236(71)90036-x
- James E. Brennan, Invariant subspaces and weighted polynomial approximation, Ark. Mat. 11 (1973), 167–189. MR 350398, DOI 10.1007/BF02388514
- James E. Brennan, Point evaluations, invariant subspaces and approximation in the mean by polynomials, J. Functional Analysis 34 (1979), no. 3, 407–420. MR 556263, DOI 10.1016/0022-1236(79)90084-3
- Scott W. Brown, Some invariant subspaces for subnormal operators, Integral Equations Operator Theory 1 (1978), no. 3, 310–333. MR 511974, DOI 10.1007/BF01682842
- John B. Conway, Subnormal operators, Research Notes in Mathematics, vol. 51, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. MR 634507
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 462-464
- MSC: Primary 47A15; Secondary 47B20, 47D25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822440-1
- MathSciNet review: 822440