The maximum modulus principle for CR functions
HTML articles powered by AMS MathViewer
- by Andrei Iordan
- Proc. Amer. Math. Soc. 96 (1986), 465-469
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822441-3
- PDF | Request permission
Abstract:
Let $M$ be a CR submanifold of ${{\mathbf {C}}^n}$ without extreme points. Then, the modulus of any CR function on $M$ cannot have a strong local maximum at any point of $M$.References
- M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), no. 2, 387–421. MR 607899, DOI 10.2307/2006990
- Richard F. Basener, Nonlinear Cauchy-Riemann equations and $q$-pseudoconvexity, Duke Math. J. 43 (1976), no. 1, 203–213. MR 402120
- Eric Bedford, $(\partial \bar \partial )_{b}$ and the real parts of CR functions, Indiana Univ. Math. J. 29 (1980), no. 3, 333–340. MR 570684, DOI 10.1512/iumj.1980.29.29024
- David Ellis, C. Denson Hill, and Chester C. Seabury, The maximum modulus principle. I. Necessary conditions, Indiana Univ. Math. J. 25 (1976), no. 7, 709–715. MR 590086, DOI 10.1512/iumj.1976.25.25055
- F. Reese Harvey and R. O. Wells Jr., Holomorphic approximation and hyperfunction theory on a $C^{1}$ totally real submanifold of a complex manifold, Math. Ann. 197 (1972), 287–318. MR 310278, DOI 10.1007/BF01428202
- Hugo Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. (2) 74 (1961), 470–493. MR 133479, DOI 10.2307/1970292
- R. O. Wells Jr., Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245–262. MR 222340, DOI 10.1090/S0002-9947-1968-0222340-8
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 465-469
- MSC: Primary 32F25
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822441-3
- MathSciNet review: 822441