A generalization of slowly varying functions
HTML articles powered by AMS MathViewer
- by D. Drasin and E. Seneta
- Proc. Amer. Math. Soc. 96 (1986), 470-472
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822442-5
- PDF | Request permission
Abstract:
This note establishes that if the main part of the definition of a slowly varying function is relaxed to the requirement that lim ${\sup _{x \to \infty }}\psi (\lambda x)/\psi (x) < \beta < \infty$ for each $\lambda > 0$, then $\psi (x) = L(x)\theta (x)$, where $L$ is slowly varying and $\theta$ is bounded. This is done by obtaining a representation for the function $\psi$.References
- S. Aljančić and D. Aranđelović, $0$-regularly varying functions, Publ. Inst. Math. (Beograd) (N.S.) 22(36) (1977), 5–22. MR 466438
- N. H. Bingham and Charles M. Goldie, Extensions of regular variation. I. Uniformity and quantifiers, Proc. London Math. Soc. (3) 44 (1982), no. 3, 473–496. MR 656246, DOI 10.1112/plms/s3-44.3.473
- N. H. Bingham and Charles M. Goldie, Extensions of regular variation. I. Uniformity and quantifiers, Proc. London Math. Soc. (3) 44 (1982), no. 3, 473–496. MR 656246, DOI 10.1112/plms/s3-44.3.473
- Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 470-472
- MSC: Primary 26A12
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822442-5
- MathSciNet review: 822442