Decomposition of positive projections onto Jordan algebras
HTML articles powered by AMS MathViewer
- by A. Guyan Robertson
- Proc. Amer. Math. Soc. 96 (1986), 478-480
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822444-9
- PDF | Request permission
Abstract:
If a positive projection $P$ from a ${C^*}$-algebra onto a Jordan algebra can be decomposed as a sum of maps satisfying certain inequalities of the Schwarz type, then $P$ is actually a sum of completely positive and completely copositive maps.References
- Man Duen Choi, Some assorted inequalities for positive linear maps on $C^{\ast }$-algebras, J. Operator Theory 4 (1980), no. 2, 271–285. MR 595415
- L. Terrell Gardner, Linear maps of $\scr C^{\ast }$-algebras preserving the absolute value, Proc. Amer. Math. Soc. 76 (1979), no. 2, 271–278. MR 537087, DOI 10.1090/S0002-9939-1979-0537087-0
- Elliott H. Lieb and Mary Beth Ruskai, Some operator inequalities of the Schwarz type, Advances in Math. 12 (1974), 269–273. MR 336406, DOI 10.1016/S0001-8708(74)80004-6
- T. W. Palmer, Characterizations of $w^{\ast }$-homomorphisms and expectations, Proc. Amer. Math. Soc. 46 (1974), 265–272. MR 361804, DOI 10.1090/S0002-9939-1974-0361804-1
- A. Guyan Robertson, Positive projections on $C^\ast$-algebras and an extremal positive map, J. London Math. Soc. (2) 32 (1985), no. 1, 133–140. MR 813392, DOI 10.1112/jlms/s2-32.1.133 E. Størmer, Decomposition of positive projections on ${C^*}$-algebras, Math. Ann. 274 (1980), 21-41.
- Edward G. Effros and Erling Størmer, Jordan algebras of self-adjoint operators, Trans. Amer. Math. Soc. 127 (1967), 313–316. MR 206733, DOI 10.1090/S0002-9947-1967-0206733-X
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 478-480
- MSC: Primary 46L70; Secondary 17C65
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822444-9
- MathSciNet review: 822444