## Boundary behavior of Green potentials

HTML articles powered by AMS MathViewer

- by Daniel H. Luecking
- Proc. Amer. Math. Soc.
**96**(1986), 481-488 - DOI: https://doi.org/10.1090/S0002-9939-1986-0822445-0
- PDF | Request permission

## Abstract:

A Green potential on the unit disk $\{ \left | z \right | < 1\}$ is a function $u(z)$ of the form \[ u(z) = \int {\log \left | {\frac {{1 - \bar wz}}{{z - w}}} \right |{\text { }}} d\alpha (w),\] where $\alpha$ is a positive measure such that $\smallint (1 - \left | w \right |)d\alpha (w)$ is finite. In this note I give a necessary and sufficient condition on a relatively closed subset $F$ of the unit disk in order that, for all such $u(z)$, \[ \liminf _{F \ni z \to 1} (1 - \left | z \right |) u(z) = 0. \] The condition is that the hyperbolic capacity of the portion of $F$ in arbitrarily small neighborhoods of 1 is bounded away from zero.## References

- Maurice Heins,
*The minimum modulus of a bounded analytic function*, Duke Math. J.**14**(1947), 179–215. MR**20639** - W. C. Nestlerode and M. Stoll,
*Radial limits of $n$-subharmonic functions in the polydisc*, Trans. Amer. Math. Soc.**279**(1983), no. 2, 691–703. MR**709577**, DOI 10.1090/S0002-9947-1983-0709577-4 - Joel H. Shapiro and Allen L. Shields,
*Unusual topological properties of the Nevanlinna class*, Amer. J. Math.**97**(1975), no. 4, 915–936. MR**390227**, DOI 10.2307/2373681 - Manfred Stoll,
*Boundary limits of Green potentials in the unit disc*, Arch. Math. (Basel)**44**(1985), no. 5, 451–455. MR**792369**, DOI 10.1007/BF01229328 - M. Tsuji,
*Potential theory in modern function theory*, Maruzen Co. Ltd., Tokyo, 1959. MR**0114894**

## Bibliographic Information

- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**96**(1986), 481-488 - MSC: Primary 31A15; Secondary 30C85
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822445-0
- MathSciNet review: 822445