A NECESSARY CONDITION FOR L^2 STABILITY OF QUASILINEAR CONSERVATION LAWS

SINING ZHENG

Abstract. This paper proves: It is the necessary condition for L^2 stability of quasilinear conservation laws that the solution is absolutely continuous.

Consider quasilinear conservation laws

$$u_t + f(u)_x = 0, \quad -\infty < x < +\infty,$$

where $u(x, t) \in \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^n$ is a smooth nonlinear function.

Function $u(x, t) \in L^\infty(\Omega) \cap BV(\Omega)$, $\Omega \in \mathbb{R}^2$ is called a weak solution if u satisfies (1) in the sense of distributions. Here $BV(\Omega)$ denotes the space of functions whose first-order derivatives are locally finite Borel measures [7].

It is well known that in general the initial value problem to (1) does not have a globally defined smooth solution; on the other hand, the uniqueness is lost in the broader class of above weak solutions. In order to single out an admissible solution, some criterion is needed. A number of such criteria have been proposed, e.g., Lax's [4], Liu's [5], viscosity [6], entropy [3] and entropy rate [1] criteria, which are all equivalent when applied to weak shocks with genuinely nonlinear fields.

In [2], R. J. DiPerna discussed the uniqueness of solutions to (1) under the entropy criterion.

A function $\eta: \mathcal{D} \to \mathbb{R}$ defined on an open domain $\mathcal{D} \subset \mathbb{R}^n$ is called an entropy for (1) with entropy flux $q: \mathcal{D} \to \mathbb{R}$, if an additional conservation law

$$\eta(u)_t + q(u)_x = 0$$

holds for all smooth solutions of (1). According to the entropy criterion a weak solution $u(x, t)$ with range in \mathcal{D} is admissible if it satisfies

$$\eta(u)_t + q(u)_x \leq 0$$

in the sense of distributions. Under the entropy criterion, the establishing of uniqueness and stability of solutions to (1) generally depends on some L^2 inequalities [2].

As to the L^2 stability of (1), R. J. DiPerna proved the following theorem [2]:

Theorem 1 (DiPerna). Suppose that $w(x, t)$ is a Lipschitz continuous solution and $u(x, t)$ is an admissible weak solution of (1) in $\mathcal{S}(T) = \{(x, t): 0 \leq t < T\}$. Then

$$\int_{|x| \leq M} |u(x, t) - w(x, t)|^2 dx \leq C_2 \int_{|x| \leq M + C_1 t} |u(x, 0) - w(x, 0)|^2 dx,$$

where the constant C_1 depends on f and L^∞-norms of w and u while the constant C_2
depends on f, T, the L^{∞}-norms of w and u and the Lipschitz constant of $w(x, 0)$.

The above theorem says that the Lipschitz continuous solution of (1) is L^2 stable in the class of admissible weak solutions.

In this paper, we prove conversely that if the solution of (1) is L^2 stable, then it must be absolutely continuous. Therefore, it is impossible to establish L^2 stability for any discontinuous solutions of (1).

Our main result is

Theorem 2. Suppose the weak solution $u(x, t)$ of (1) is L^2 stable and $u_0(x) \equiv u(x, 0)$ is locally Lipschitz continuous. Then u is absolutely continuous.

Proof. Clearly, $u(x + \epsilon, t)$ is also a solution of (1) for $\epsilon > 0$. By (4) we have

$$\int_{|x| \leq M} |u(x + \epsilon, t) - u(x, t)|^2 \, dx \leq C_2 \int_{|x| \leq M + C_1 t} |u_0(x + \epsilon) - u_0(x)|^2 \, dx$$

and hence

$$\int_{|x| \leq M} \frac{|u(x + \epsilon, t) - u(x, t)|^2}{\epsilon^2} \, dx \leq C_2 \int_{|x| \leq M + C_1 t} \frac{|u_0(x + \epsilon) - u_0(x)|^2}{\epsilon^2} \, dx$$

$$\leq C_2 (M + C_1 T)(\text{Lip } u_0)^2 = \text{const}$$

where Lip u_0 is the Lipschitz constant of $u_0(x)$ for $|x| \leq M + C_1 T$. In view of the weak compactness of Banach space L^2, letting $\epsilon \to 0^+$, we get

$$\int_{|x| \leq M} |u_x|^2 \, dx \leq \text{const}.$$

By using the Cauchy inequality we obtain

$$\int_{|x| \leq M} |u_x|^2 \, dx \leq \text{const}.$$

The estimate (5) implies that $u(x, t)$ is an absolutely continuous solution. This completes the proof.

We note that in our theorem the system (1) may be neither genuinely nonlinear nor strictly hyperbolic.

Acknowledgement. The author would like to thank Professor Wu Zhuoqun for his enlightenment.

References

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Department of Applied Mathematics, Dalian Institute of Technology, Dalian, People's Republic of China (Current address)