Antisymmetry and the direct integral decomposition of unstarred operator algebras
HTML articles powered by AMS MathViewer
- by Wacław Szymański
- Proc. Amer. Math. Soc. 96 (1986), 497-501
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822448-6
- PDF | Request permission
Abstract:
It is shown that the direct integral decomposition of a non-self-adjoint operator algebra ${\mathcal A}$ has the diagonal ${\mathcal A} \cap {{\mathcal A}^ * }$ of this algebra as the algebra of diagonalizable operators if and only if almost all direct integrands of ${\mathcal A}$ are antisymmetric algebras. By using the antisymmetric decomposition a direct integral model of a commutative, reflexive algebra is obtained.References
- E. A. Azoff, C. K. Fong, and F. Gilfeather, A reduction theory for non-self-adjoint operator algebras, Trans. Amer. Math. Soc. 224 (1976), no. 2, 351–366 (1977). MR 448109, DOI 10.1090/S0002-9947-1976-0448109-1
- John B. Conway and Robert F. Olin, A functional calculus for subnormal operators. II, Mem. Amer. Math. Soc. 10 (1977), no. 184, vii+61. MR 435913, DOI 10.1090/memo/0184
- J. T. Schwartz, $W^{\ast }$-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0232221
- Wacław Szymański, Antisymmetric operator algebras. I, II, Ann. Polon. Math. 37 (1980), no. 3, 263–274, 299–311. MR 587497, DOI 10.4064/ap-37-3-263-274
- Wacław Szymański, Antisymmetry in the WOT-closed algebra generated by an isometry, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), no. 3-4, 137–142 (1981) (English, with Russian summary). MR 620349
- W. Szymański, Antisymmetry in operator algebras, Operator algebras and group representations, Vol. II (Neptun, 1980) Monogr. Stud. Math., vol. 18, Pitman, Boston, MA, 1984, pp. 190–197. MR 733316
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 497-501
- MSC: Primary 47D25; Secondary 46L45
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822448-6
- MathSciNet review: 822448