Decomposition theorems in rational homotopy theory
HTML articles powered by AMS MathViewer
- by John Oprea
- Proc. Amer. Math. Soc. 96 (1986), 505-512
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822450-4
- PDF | Request permission
Abstract:
Let $F \to E \to B$ be a fibration of simply connected rational spaces with finite rational betti numbers. Denote the connecting homomorphism of the fibration by ${\partial _\# }$ and the Hurewicz map of the fibre $F$ by $h$. Then, it is shown that there is a decomposition $F \simeq \mathcal {F} \times K$ where $K$ is the product of rational Eilenberg-Mac Lane spaces contained in $\Omega B$ maximal with respect to the conditions: ${\pi _ * }\left ( K \right ) \cap \operatorname {Ker}{\partial _\# } = 0$ and ${\partial _\# }\left ( {{\pi _ * }\left ( K \right )} \right ) \cap \operatorname {Ker}h = 0$. This decomposition is obtained using Sullivan’s theory of minimal models. Applications are given of the main theorem and a dual result is proved for rational cofibrations.References
- H. J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), no. 3, 219–242. MR 431172, DOI 10.1007/BF01425239
- Henri Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson & Cie, Paris, 1951, pp. 57–71 (French). MR 0042427
- Yves Félix and Jean-Claude Thomas, Homotopie rationnelle. Dualité et complémentarité des modèles, Bull. Soc. Math. Belg. Sér. A 33 (1981), no. 1, 7–19 (French). MR 682637
- Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729–756. MR 275424, DOI 10.2307/2373349
- Daniel Henry Gottlieb, Witnesses, transgressions, and the evaluation map, Indiana Univ. Math. J. 24 (1974/75), 825–836. MR 377874, DOI 10.1512/iumj.1975.24.24065
- Mark J. Gotay, Richard Lashof, Jędrzej Śniatycki, and Alan Weinstein, Closed forms on symplectic fibre bundles, Comment. Math. Helv. 58 (1983), no. 4, 617–621. MR 728456, DOI 10.1007/BF02564656
- Phillip A. Griffiths and John W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, vol. 16, Birkhäuser, Boston, Mass., 1981. MR 641551
- H. B. Haslam, $G$-spaces $\textrm {mod}\ F$ and $H$-spaces $\textrm {mod}\ F$, Duke Math. J. 38 (1971), 671–679. MR 287538
- Stephen Halperin, Rational fibrations, minimal models, and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199–224. MR 515558, DOI 10.1090/S0002-9947-1978-0515558-4
- Stephen Halperin, Lectures on minimal models, Publ. IRMA Lille 3 (1981), no. 4, 274 pp. (not consecutively paged). MR 637558
- Stephen Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173–199. MR 461508, DOI 10.1090/S0002-9947-1977-0461508-8
- Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
- Stephen Halperin and Jean-Claude Thomas, Rational equivalence of fibrations with fibre $G/K$, Canadian J. Math. 34 (1982), no. 1, 31–43. MR 650851, DOI 10.4153/CJM-1982-005-7
- Joseph Neisendorfer, Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces, Pacific J. Math. 74 (1978), no. 2, 429–460. MR 494641
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Daniel Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, vol. 1025, Springer-Verlag, Berlin, 1983 (French). MR 764769, DOI 10.1007/BFb0071482
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 505-512
- MSC: Primary 55P62; Secondary 55R05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0822450-4
- MathSciNet review: 822450