A covering lemma for product spaces
HTML articles powered by AMS MathViewer
- by Jean-Lin Journé
- Proc. Amer. Math. Soc. 96 (1986), 593-598
- DOI: https://doi.org/10.1090/S0002-9939-1986-0826486-9
- PDF | Request permission
Abstract:
We give a substitute for the Whitney decomposition of an arbitrary open set in ${{\mathbf {R}}^2}$ where squares are replaced by rectangles. Then we deduce the ${L^\infty }$-BMO boundedness of certain singular integral operators defined on product spaces.References
- Sun-Yung A. Chang, Carleson measure on the bi-disc, Ann. of Math. (2) 109 (1979), no. 3, 613–620. MR 534766, DOI 10.2307/1971229
- Sun-Yung A. Chang and Robert Fefferman, A continuous version of duality of $H^{1}$ with BMO on the bidisc, Ann. of Math. (2) 112 (1980), no. 1, 179–201. MR 584078, DOI 10.2307/1971324
- Ronald R. Coifman and Yves Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (French). With an English summary. MR 518170
- Robert Fefferman and Elias M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117–143. MR 664621, DOI 10.1016/S0001-8708(82)80001-7 J.-L. Journé, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, Berlin and New York, 1983. —, Calderón-Zygmund operators on product spaces, Revista Ibero-Americana 3 (1985).
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 593-598
- MSC: Primary 42B20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0826486-9
- MathSciNet review: 826486