Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Coincidence theorem and saddle point theorem
HTML articles powered by AMS MathViewer

by H. Komiya
Proc. Amer. Math. Soc. 96 (1986), 599-602
DOI: https://doi.org/10.1090/S0002-9939-1986-0826487-0

Abstract:

We discuss Browder’s coincidence theorem and derive a saddle point theorem from it.
References
  • Felix E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283–301. MR 229101, DOI 10.1007/BF01350721
  • Felix E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 67–80. MR 737389, DOI 10.1090/conm/026/737389
  • Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
  • Ky. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126. MR 47317, DOI 10.1073/pnas.38.2.121
  • —, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961), 305-310.
  • Ky Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240. MR 251603, DOI 10.1007/BF01110225
  • Chung Wei Ha, Minimax and fixed point theorems, Math. Ann. 248 (1980), no. 1, 73–77. MR 569411, DOI 10.1007/BF01349255
  • Shizuo Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J. 8 (1941), 457–459. MR 4776
  • John L. Kelley and Isaac Namioka, Linear topological spaces, Graduate Texts in Mathematics, No. 36, Springer-Verlag, New York-Heidelberg, 1976. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, and Kennan T. Smith; Second corrected printing. MR 0394084
  • S. Simons, Two-function minimax theorems and variational inequalities for functions on compact and noncompact sets, with some comments on fixed-point theorems, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 377–392. MR 843623, DOI 10.1090/pspum/045.2/843623
  • Wataru Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan 28 (1976), no. 1, 168–181. MR 399979, DOI 10.2969/jmsj/02810168
  • Wataru Takahashi, Recent results in fixed point theory, Southeast Asian Bull. Math. 4 (1980), no. 2, 59–85. MR 655748
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 49A40, 54H25
  • Retrieve articles in all journals with MSC: 47H10, 49A40, 54H25
Bibliographic Information
  • © Copyright 1986 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 96 (1986), 599-602
  • MSC: Primary 47H10; Secondary 49A40, 54H25
  • DOI: https://doi.org/10.1090/S0002-9939-1986-0826487-0
  • MathSciNet review: 826487