$A_ p$-weight properties of real analytic functions in $\textbf {R}^ n$
HTML articles powered by AMS MathViewer
- by Nicola Garofalo and Paul B. Garrett
- Proc. Amer. Math. Soc. 96 (1986), 636-642
- DOI: https://doi.org/10.1090/S0002-9939-1986-0826494-8
- PDF | Request permission
Abstract:
In this note we show that given any real analytic function $u$ in ${{\mathbf {R}}^n}$, there exists some $p > 1$ for which $\left | u \right |$ is locally an ${A_p}$-weight of Muckenhoupt.References
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 96 (1986), 636-642
- MSC: Primary 42B25; Secondary 26E05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0826494-8
- MathSciNet review: 826494