## Co-Blumberg spaces

HTML articles powered by AMS MathViewer

- by J. B. Brown and Z. Piotrowski
- Proc. Amer. Math. Soc.
**96**(1986), 683-688 - DOI: https://doi.org/10.1090/S0002-9939-1986-0826502-4
- PDF | Request permission

## Abstract:

A pair $(X,Y)$ of topological spaces is said to be a Blumberg pair ("BP") if for every $f:X \to Y$, there exists a dense subset $D$ of $X$ such that $f|D$ is continuous. $X$ is a Blumberg space if $(X,R)$ is BP, where $R$ denotes the reals. $Y$ is co-Blumberg if $(R,Y)$ is BP. We survey the literature concerning the relationships between Blumberg spaces and Baire spaces and then study the relationships between co-Blumberg spaces and separability properties.## References

- Kevin A. Broughan,
*The intersection of a continuum of open dense sets*, Bull. Austral. Math. Soc.**16**(1977), no. 2, 267–272. MR**448288**, DOI 10.1017/S0004972700023297 - J. C. Bradford and Casper Goffman,
*Metric spaces in which Blumberg’s theorem holds*, Proc. Amer. Math. Soc.**11**(1960), 667–670. MR**146310**, DOI 10.1090/S0002-9939-1960-0146310-1
J. C. Bradford, - Henry Blumberg,
*New properties of all real functions*, Trans. Amer. Math. Soc.**24**(1922), no. 2, 113–128. MR**1501216**, DOI 10.1090/S0002-9947-1922-1501216-9 - Jack B. Brown,
*Metric spaces in which a strengthened form of Blumberg’s theorem holds*, Fund. Math.**71**(1971), no. 3, 243–253. MR**292024**, DOI 10.4064/fm-71-3-243-253
—, - W. W. Comfort,
*A survey of cardinal invariants*, General Topology and Appl.**1**(1971), no. 2, 163–199. MR**290326** - R. Engelking,
*Outline of general topology*, North-Holland Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. Translated from the Polish by K. Sieklucki. MR**0230273** - I. Juhász,
*Cardinal functions in topology*, Mathematical Centre Tracts, No. 34, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg. MR**0340021** - Władysław Kulpa and Andrzej Szymański,
*Decompositions into nowhere dense sets*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**25**(1977), no. 1, 37–39 (English, with Russian summary). MR**438274** - Ronnie Levy,
*A totally ordered Baire space for which Blumberg’s theorem fails*, Proc. Amer. Math. Soc.**41**(1973), 304. MR**324630**, DOI 10.1090/S0002-9939-1973-0324630-4 - Zbigniew Piotrowski and Andrzej Szymański,
*Concerning Blumberg’s theorem*, Houston J. Math.**10**(1984), no. 1, 109–115. MR**736579** - Lynn Arthur Steen and J. Arthur Seebach Jr.,
*Counterexamples in topology*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1978. MR**507446** - Petr Štěpánek and Petr Vopěnka,
*Decomposition of metric spaces into nowhere dense sets*, Comment. Math. Univ. Carolinae**8**(1967), 387–404; correction, 8 (1967), 567–568. MR**225657** - Andrzej Szymański,
*On $m$-Baire and $m$-Blumberg spaces*, Proceedings of the Conference Topology and Measure, II, Part 1 (Rostock/Warnemünde, 1977) Ernst-Moritz-Arndt Univ., Greifswald, 1980, pp. 151–161. MR**646287** - William A. R. Weiss,
*The Blumberg problem*, Trans. Amer. Math. Soc.**230**(1977), 71–85. MR**438280**, DOI 10.1090/S0002-9947-1977-0438280-0 - H. E. White Jr.,
*Topological spaces in which Blumberg’s theorem holds*, Proc. Amer. Math. Soc.**44**(1974), 454–462. MR**341379**, DOI 10.1090/S0002-9939-1974-0341379-3 - H. E. White Jr.,
*Topological spaces in which Blumberg’s theorem holds. II*, Illinois J. Math.**23**(1979), no. 3, 464–468. MR**537801**

*Characterization of metric Blumberg pairs*, unpublished manuscript.

*Variations on Blumberg’s theorem*, Real Analysis Exchange

**9**(1983/84), 123-137.

## Bibliographic Information

- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**96**(1986), 683-688 - MSC: Primary 54C30; Secondary 26A03
- DOI: https://doi.org/10.1090/S0002-9939-1986-0826502-4
- MathSciNet review: 826502