MAPS WHICH PRESERVE ANR'S

TATSUHIKO YAGASAKI

Abstract. It is shown that maps preserve ANR's and LC\"-property if they satisfy a certain movability condition in the fiber shape theory. This generalizes the known results of hereditary shape equivalences to a non cell-like case.

1. Introduction. Spaces are assumed to be metrizable and ANR's are ones for metric spaces. Suppose $f: X \to Y$ is a proper onto map ($f^{-1}(B)$ is compact for each compact $B \subset Y$) and X is an ANR. It is a long-standing problem to determine conditions on f under which Y is an ANR. G. Kozlowski [K] proved that if f is a hereditary shape equivalence then Y is an ANR. In [Y1] we introduced the notion of movability for maps and proved [Y1, Theorem 1.2] that f is a hereditary shape equivalence iff f is a CE-map and movable. Here an onto map $f: X \to Y$ is said to be movable provided for some (eq. any) ANR M containing X as a closed subset the following holds:

(*) For each neighborhood U of f^{-1} in $Y \times M$ there exists a neighborhood V of f^{-1} in U such that for each neighborhood W of f^{-1} in V there exists a homotopy $h: V \times [0,1] \to U$ such that $h_0 = \text{id}$, $h_1(V) \subset W$, $ph_t = p$ ($0 \leq t \leq 1$), where $p: Y \times M \to Y$ is the projection.

In addition, if we can take the homotopy h so that $h_t|_{f^{-1}} = \text{id}$ ($0 \leq t \leq 1$), then we say f is strongly movable.

The purpose of this note is to show that this movability assumption on f is sufficient to ensure that Y is an ANR.

Theorem. Suppose $f: X \to Y$ is a movable map.
(1) If X is an ANR then so is Y.
(2) If X is locally n-connected (LC\") then so is Y.

In [K], it was also proved that a CE-map with an ANR domain is a hereditary shape equivalence iff the range is an ANR. Our theorem, combined with [CD1, Proposition 3.6], [Y1, Corollary 4.4], yields the following version.

Corollary. Suppose $f: X \to Y$ is a proper onto map and X is a separable, locally compact ANR. Then f is (strongly) movable iff Y is an ANR and f is completely movable.

Received by the editors April 6, 1984 and, in revised form, April 2, 1985.
1980 Mathematics Subject Classification. Primary 54C55, 54C56.
Key words and phrases. ANR, LC\", movability, complete movability, hereditary shape equivalence, approximate fibration.
As for the definition of the complete movability, refer to [CD₁], and for the other related topics, refer to [Y₁].

Remark. (i) In the above corollary, the complete movability of \(f \) implies the approximate homotopy lifting property for all \(n \)-cells \((n \geq 0)\) [CD₁, Theorem 3.3, Proposition 3.6] and also that each fiber of \(f \) is an FANR. Therefore \(Y \) is LC\(^\infty \) by [CD₂, Theorem 3.4]. However, in general, \(Y \) is not necessarily an ANR, because there exists a CE (hence completely movable) map from the Hilbert cube to a compactum which is not a shape equivalence [T].

(ii) In [Y₂], it is shown that any movable map does not raise dimension. Therefore, if \(f: X \to Y \) is a completely movable map and \(X \) is an \(n \)-dimensional, locally compact ANR, then \(Y \) is an ANR iff \(\dim Y \leq n \) [Y₂, Corollary 3.5].

2. Proof of Theorem. Suppose \(f: X \to Y \) is a movable map and \(M \) and \(N \) are ANR’s which contain \(X \) and \(Y \) as closed subsets respectively. Let \(p: N \times M \to N \) denote the projection and let \(\rho \) be a metric on \(N \). For each neighborhood \(U \) of \(f^{-1} \) in \(N \times M \), we define \(U|_Y = U \cap Y \times M \). First we have a lemma.

Lemma 1. Let \(W_i \) (\(i \geq 0 \)) be open neighborhoods of \(f^{-1} \) in \(N \times M \). Then there exist an open neighborhood \(U \) of \(f^{-1} \) in \(Y \times M \), open neighborhoods \(V_i \) (\(i \geq 0 \)) of \(f^{-1} \) in \(N \times M \) and a map \(h: V_0 \times [0, \infty) \to W_0 \) such that \(V_{i+1} \subset V_i \), \(U = V_1|_Y \), \(h_0 = \text{id} \), \(ph_i = \rho \), \(h(V_i \times [i, \infty)) \subset W_i \) (\(i \geq 0 \)).

Proof. We may assume \(W_{i+1} \subset W_i \) (\(i \geq 0 \)). Since \(f \) is movable, there exist open neighborhoods \(U_i \) (\(i \geq 0 \)) of \(f^{-1} \) in \(Y \times M \) and homotopies \(g^i: U_i \times [0, 1] \to U_{i-1} \) (\(i \geq 1 \)) such that \(U_{i+1} \subset U_i \subset W_i|_Y \) (\(i \geq 0 \)), \(g_0^i = \text{id} \), \(g^i(U_i) \subset U_{i+1} \), \(pg^i = \rho \) \((i \geq 1, 0 \leq t \leq 1)\). Let \(U = U_1 \) and define \(g: U \times [0, \infty) \to W_0 \) by

\[
g(y, x, t) = g^n(g_1^{-1} \circ \cdots \circ g_1(y, x), t - (n - 1)) \in U_{n-1}
\]

for \((y, x) \in U, n - 1 \leq t \leq n, n \geq 1\).

Take an open neighborhood \(V_0 \) of \(f^{-1} \) in \(W_0 \) with \(V_0|_Y = U \). Since \(M \) is an ANR, using the Borsuk homotopy extension theorem or its proof [H, p. 117], inductively we can find maps \(h^s: V_0 \times [0, n] \to W_0 \) (\(n \geq 1 \)) and open neighborhoods \(V_n \) (\(n \geq 1 \)) of \(U \) in \(V_0 \) such that \(h^{n+1}|_{V_0 \times [0, n]} = h^n \), \(h^n_0 = \text{id} \), \(h^n_{U \times [0, n]} = g^i_{U \times [0, n]} \), \(ph^n_i = \rho \) \((0 \leq s \leq n)\), \(h^n(V_i \times [i, n]) \subset W_i \) \((0 \leq i \leq n)\). The desired map \(h \) is obtained by piecing \(h^n \) \((n \geq 1)\) together.

Proof of Theorem (1). Since the ANR \(f^{-1} = X \) is closed in \(N \times M \), there exists a retraction \(r: W_0 \to f^{-1} \) from some open neighborhood of \(f^{-1} \) in \(N \times M \). Since \(pr|_{f^{-1}} = p|_{f^{-1}} \), we can find open neighborhoods \(W_i \) (\(i \geq 1 \)) of \(f^{-1} \) in \(W_0 \) such that \(\rho(pr(z), p(z)) < 1/i \) \((z \in W_i, i \geq 1)\). Applying Lemma 1 to \(W_i \) (\(i \geq 0 \)), we obtain \(U_i \subset V_i \) (\(i \geq 0 \)) and \(h \) as in Lemma 1.

Let \(y_0 \in Y \). Take a point \(x_0 \in f^{-1}(y_0) \) and an open neighborhood \(K \) of \(y_0 \) in \(N \) such that \(K \times \{x_0\} \subset V_0 \). We will show that there exists a map \(k: K \to Y \) such that \(k|_{K \cap Y} = \text{id}_{K \cap Y} \). Then \(K \cap Y \) is an ANR neighborhood of \(y_0 \) in \(Y \) since \(k^{-1}|_{K \cap Y} \) is a retraction from an ANR \(k^{-1}(K \cap Y) \) onto \(K \cap Y \). This implies that \(Y \) is a local ANR, hence an ANR [H, p. 68].
Define a map \(s: K \to V_0 \) by \(s(y) = (y, x_0) \) \((y \in K)\). Since \(s(K \cap Y) \subseteq U \subseteq V_i \) \((i \geq 0)\), there exist closed neighborhoods \(K_i \) \((i \geq 0)\) of \(K \cap Y \) in \(K \) such that \(K_0 = K, K_{i+1} \subseteq \text{Int} K_i, \cap K_i = K \cap Y \) and \(s(K_i) \subseteq V_i \) \((i \geq 1)\). Take a function \(\lambda: K - Y \to [0, \infty) \) with \(\lambda(K_i - Y) \subseteq [i, \infty) \) and define \(k: K \to Y \) by

\[
k(y) =
\begin{cases}
 y, & y \in K \cap Y, \\
 \text{prh}(s(y), \lambda(y)), & y \in K - Y.
\end{cases}
\]

If \(y \in K_i - Y, i \geq 1 \), then \(h(s(y), \lambda(y)) \in W_i \) and by the choice of \(W_i, \rho(k(y), y) < 1/i \). The continuity of \(k \) follows from this observation. This completes the proof.

We proceed to the proof of Theorem (2) and assume \(f^{-1} = X \) is \(LC^n \). If \(\mathcal{U} \) is an open cover of \(f^{-1} \) in \(N \times M \), then two maps \(g, g': P \to f^{-1} \) are said to be \(\mathcal{U} \)-near if for each \(x \in P \) there exists \(U \in \mathcal{U} \) such that \(g(x), g'(x) \in U \). The next lemma follows from [H, p. 156, Theorem 4.1] and will play the same role as the retraction \(r: W_0 \to f^{-1} \) in the preceding proof.

Lemma 2. Let \(\mathcal{U}_i \) \((i \geq 0)\) be a sequence of open coverings of \(f^{-1} \) in \(N \times M \). Then there exist open neighborhoods \(W_i \) \((i \geq 0)\) of \(f^{-1} \) in \(N \times M \) such that if \(P = \bigcup \{ P_i: i \geq 0 \} \) is an \((n + 1)\)-dimensional locally compact polyhedron, \(P_i \) is a compact subpolyhedron of \(P \), \(P_i \subseteq \text{Int} P_{i+1} \) \((i \geq 0)\) and \(g: P \to W_0 \) is a map with \(g(P_i - \text{Int} P_{i-1}) \subseteq W_i \) \((i \geq 0)\), then there exists a map \(g': P \to f^{-1} \) such that \(g \) and \(g' \) are \(\mathcal{U}_i \)-near on \(P_i - \text{Int} P_{i-1} \) for \(i \geq 0 \).

Proof of Theorem (2). To see \(Y \) is \(LC^n \), let \(y_0 \in Y \) and let \(L_0 \) be any neighborhood of \(y_0 \) in \(Y \). Take open neighborhoods \(K_0, K_1 \) of \(y_0 \) in \(N \) such that \(K_0 \cap Y = L_0 \), \(\text{Cl} K_1 \subseteq K_0 \) (\(\text{Cl} K_1 \) is the closure of \(K_1 \) in \(N \)).

For each \(i \geq 1 \) take an open covering \(\mathcal{U}_i \) of \(N \times M \) which refines \(\mathcal{U}_0 = \{(N - \text{Cl} K_1) \times M, K_0 \times M\} \) and such that for each \(U \in \mathcal{U}_i \), \(\diam \rho(U_i) < 1/i \). There exist open neighborhoods \(W_i \) \((i \geq 0)\) of \(f^{-1} \) in \(N \times M \) as in Lemma 2. Then there exist \(U, V_i \) \((i \geq 0)\) and \(h \) as in Lemma 1. Take a point \(x_0 \in f^{-1}(y_0) \) and open neighborhoods \(K_3, K_2 \) of \(y_0 \) in \(K_1 \) such that \(K_2 \times \{x_0\} \subseteq V_0 \) and the inclusion \(K_3 \subseteq K_2 \) is nullhomotopic (note that the ANR \(N \) is locally contractible).

Let \(L = K_3 \cap Y \). We will show that any map \(\alpha: S^k \to L \) from the k-sphere \(S^k \) \((0 \leq k \leq n)\) has an extension \(\beta: B^{k+1} \to L_0 \) over the \((k + 1)\)-ball \(B^{k+1} \).

Since \(\alpha \) is nullhomotopic in \(K_2 \), \(\alpha \) extends to a map \(\gamma: B^{k+1} \to K_2 \). Define \(s: B^{k+1} \to V_0 \) by \(s(z) = (\gamma(z), x_0) \), \(z \in B^{k+1} \). Since \(s(S^k) \subseteq U \subseteq V_i \) \((i \geq 0)\), there exist compact subpolyhedra \(P_i \) \((i \geq 0)\) of \(B^{k+1} \) (the interior of \(B^{k+1} \)) such that \(B^{k+1} = \bigcup P_i \), \(P_i \subseteq \text{Int} P_{i+1} \), \(s(B^{k+1} - \text{Int} P_i) \subseteq V_{i+1} \) \((i \geq 0)\). Take a function \(\lambda: B^{k+1} \to [0, \infty) \) such that \(\lambda(B^{k+1} - \text{Int} P_i) \subseteq [i + 1, \infty) \) \((i \geq 0)\). Define \(g: B^{k+1} \to W_0 \) by \(g(z) = h(s(z), \lambda(z)) \). Then \(g(P_i - \text{Int} P_{i-1}) \subseteq W_i \) \((i \geq 0)\). By the choice of \(W_i \) \((i \geq 0)\), we have a map \(g': B^{k+1} \to f^{-1} \) such that \(g \) and \(g' \) are \(\mathcal{U}_i \)-near on \(P_i - \text{Int} P_{i-1} \) \((i \geq 0)\). Note that \(pg = \gamma, pg(\hat{B}^{k+1}) \subseteq L_0 \), \(\rho(pg(z), \gamma(z)) < 1/i \) \((z \in P_i - \text{Int} P_{i-1}, i \geq 1)\). Finally define the map \(\beta: B^{k+1} \to L_0 \) by \(\beta|_{B^{k+1}} = \alpha \), \(\beta|_{B^{k+1} - \text{Int} P_{i-1}} = pg' \). The continuity of \(\beta \) follows from the above observation. This completes the proof.
REFERENCES

[CD₁] Similarly, Local n-connectivity and approximate lifting, Topology Appl. 13 (1982), 225–228.

Institute of Mathematics, University of Tsukuba, Sakura-mura, Ibaraki, 305, Japan