A TRIVIAL LINK WITH NO LINEAR UNLINKING

TOM KNOBLAUCH

ABSTRACT. Not every relative link (finite collection of disjoint polygonal spanning arcs of a cube) that is trivial allows a linear unlinking.

I. Introduction. The following linearization question is from [1, Question 9]:

I.1 Question. Given a polygonal unknotted spanning arc A of a cube C, is there an unknotting that keeps the endpoints of A fixed and is linear at each stage?

In this paper we give a negative answer to the following related question:

I.2 Question. Given disjoint polygonal spanning arcs E_1, E_2, \ldots, E_n in a cube C and an isotopy of the set $E_1 \cup E_2 \cup \cdots \cup E_n$ in C keeping the endpoints fixed and taking each E_i onto a line segment, is there such an isotopy that is linear at each stage?

There is an example in [2] of two isotopic imbeddings of a 1-complex in E^3 for which there is no linear isotopy. Our example is an improvement in that

(1) each component of our example is an arc,
(2) our imbedding is trivial, and
(3) the example and techniques of this paper will be used in a sequel to answer Question I.1.

II. The construction. Let $C = \{ (x,y,z) \mid -15.0003 \leq x \leq 15.0003, -3 \leq y \leq 3, 0 \leq z \leq 801 \}$. C is not a cube, but it can be changed into a cube by a linear homeomorphism. Let E_1 and E_2 be as in Figure 1, where they are shown as fattened arcs so that the linking of the other arcs in Figure 1 can be more easily seen. More exactly,

$$E_1 = \{ (-5.00625, -1, 801), (0, -1, 801), (5.00625, -1, 0) \} \cup \{ (-5.00625, -1, 801), (0, -1, 801), (5.00625, -1, 0) \};$$

$$E_2 = \{ (-5.1, 1, 0), (0, 1, 51), (5.1, 1, 0) \} \cup \{ (0, 1, 51), (5.1, 1, 0) \}. $$

Then, for $1 \leq z \leq 1.00026$, let $A(z)$ be an arc consisting of three line segments and containing as a subset

$$ \{ (-4.997, 3, z), (-5.0001, -1, z) \} \cup \{ (4.997, 3, z), (5.0001, -1, z) \}. $$

Let $B(z)$ be an arc consisting of three line segments and containing

$$ \{ (-4.997, -3, z), (-5.0001, 1, z) \} \cup \{ (4.997, -3, z), (5.0001, 1, z) \}. $$

Let $C(z)$ be an arc consisting of three line segments and containing

$$ \{ (-15.0003, -3, z), (5.0001, 1, z) \} \cup \{ (15.0003, -3, z), (-5.0001, 1, z + .000001) \}. $$

Finally, let $D(z)$ be an arc consisting of three line segments and containing

$$ \{ (-15.0003, 3, z), (5.0001, -1, z - .000001) \} \cup \{ (15.0003, 3, z), (-5.0001, -1, z) \}. $$

Received by the editors November 30, 1984 and, in revised form, March 28, 1985.

1980 Mathematics Subject Classification. Primary 57M25.

©1986 American Mathematical Society

0002-9939/86 $1.00 + .25 per page
Next let $E_3 = B(1)$, $E_4 = C(1.000001)$, $E_5 = C(1.000003)$; for $i = 6, 8, 10, \ldots$, 28 let $E_i = A(1 + (i - 5) \times 10^{-5})$; for $i = 7, 9, 11, \ldots$, 29 let $E_i = B(1 + (i - 5) \times 10^{-5})$; let $E_{30} = D(1.000247), E_{31} = D(1.000249)$ and $E_{32} = A(1.00026)$. The collection $\{E_1, E_2, \ldots, E_{32}\}$ is a trivial link. The unlinking can be accomplished by unlinking E_{32} from E_1 and E_2, then unlinking E_{31} from E_1 and E_2, then E_{30}, E_{29}, etc.

We prove that no unlinking is linear by demonstrating a limited range of vertical motion for the interior vertex of E_1 and for that of E_2. Within this limited range of motion, E_{32} cannot be unlinked from E_1 and E_2.

III. Limitations on the motion of the link. Let the interior vertex of E_1 and that of E_2 be given by (x_1, y_1, z_1) and (x_2, y_2, z_2), respectively. Each arc E_i has a leg E^1_i, whose point of attachment to ∂G has a negative x-coordinate, a leg E^2_i, whose point of attachment has a positive x-coordinate, and, for $i \neq 1, 2$, a crosspiece.

In §II, each arc E_i had specific coordinates. In this section we use the same symbol E_i to refer to the image of arc E_i at a stage of an isotopy that is linear at each stage.

The yz-slope of a line segment in G is defined to be the slope of its projection into the yz-plane.

In this section we assume

1. $601 \leq z_1 \leq 801$ and $50 \leq z_2 \leq 53$.

2. $\max_{j=1,2} |yz$-slope $E^j_i| \leq 2$ for $i = 3, 4, 5, \ldots, 32$.

If these two conditions are maintained throughout an isotopy that is linear on the E_i's at each stage, then E_3, E_4, \ldots, E_{32} will remain linked with E_1 and E_2 as in Figure 1.
III.1 Lemma. Suppose E_1, E_2 and E_{32} are constructed as in §II, and an isotopy is given that is linear at each stage on these three arcs and satisfies conditions (1) and (2) as they apply to E_1, E_2, and E_{32}. Then at each stage yz-slope $E_{32}^2 \neq -2$ or yz-slope $E_{32}^3 > .001$.

Proof. The proof consists of two parts:

(A) If yz-slope $E_{32}^2 = -2$, then $x_2 > 1.5$.

(B) If yz-slope $E_{32}^1 \leq .001$, then $x_2 < 1.5$.

Part A. It is sufficient to show that even the extreme case yz-slope $E_{32}^2 = -2$ and $x_2 = 1.5$ would force E_{32}^3 to cross the plane determined by E_2 outside of the triangle, two of whose sides are E_3^1 and E_2^2. Move the upper endpoint of E_{32}^2 along a ray parallel to the positive x-axis until E_{32}^2 intersects E_2^2 at the point (u_2, v_2, w_2).

A.1 An upper bound for u_2. Projecting into the yz-plane, we see that a lower bound for w_2 occurs when $(x_2, y_2, z_2) = (1.5, 3, 50)$. Find the intersection of the yz-projections of E_{32}^2 and E_2^2; $w_2 \geq 4.62$. Then, project into the xz-plane, take $(x_2, z_2) = (1.5, 53)$, and use $w_2 \geq 4.62; u_2 \leq 4.79$.

Next, move the upper endpoint of E_{32}^2 along a ray parallel to the negative x-axis until E_{32}^2 intersects E_2^1 at the point (u_1, v_1, w_1). (If E_{32}^3 is not long enough to intersect E_2^1, then the movement is until the line determined by E_{32}^2 intersects E_2^1.)

A.2 A lower bound for u_1. Projecting into the yz-plane, we see that an upper bound for w_1 occurs when $(y_1, z_1) = (-3, 601)$. Find the intersection of the yz-projections of E_1^2 and E_{32}^1; $w_2 = 9.07$. Project into the xz-plane, take $(x_1, z_1) = (-15.0003, 601)$, and use $w_1 = 9.07; u_1 \geq 4.70$.

A.3 An upper bound for u_1. Use $(y_1, z_1) = (3, 601)$ and $(y_2, z_2) = (-3, 50)$ to find $v_1 \leq -9.4$ and $v_2 \geq .52$. By an argument from similar triangles,

\[
\frac{(4.9997 - u_1)}{(4.9997 - u_2)} \geq 3.94/2.48.
\]

Then the estimate $u_2 \leq 4.79$ above implies $u_1 \leq 4.67$. This contradicts the earlier estimate $u_1 \geq 4.7$ and Part A is complete.

Part B. It is enough to show that the case yz-slope $E_{32}^1 = .001$ and $x_2 = 1.5$ is impossible. Move the free endpoint of E_{32}^1 along a ray parallel to the negative x-axis until E_{32}^1 intersects E_2^1 at the point (u_2, v_2, w_2).

B.1 A lower bound for u_2. Projecting into the yz-plane, we see that a lower bound for w_2 occurs when $(x_2, y_2, z_2) = (1.5, -3, 50)$ and is $w_2 \geq .998$. In the xz-plane, use $w_2 \geq .998$ and $(x_2, z_2) = (1.5, 53); u_2 \geq -4.98$.

Now move the free endpoint of E_{32}^1 along a ray parallel to the positive x-axis until the line containing E_{32}^1 intersects E_2^1 at the point (u_1, v_1, w_1).

B.2 An upper bound for u_1. In the yz-plane, take $(y_1, z_1) = (3, 601)$ to find $w_1 \leq .997$. Then, in the xz-plane, use $(x_1, z_1) = (15.0003, 601)$ to find $u_1 \leq -4.97$.

B.3 A lower bound for u_1. Use $(y_1, z_1) = (3, 601)$ and $(y_2, z_2) = (-3, 50)$ to find

\[
(u_1 + 4.9997)/(u_2 + 4.9997) \geq (3 + .9933)/(3 - .9201)
\]

which, with the estimate $u_2 \geq -4.98$, implies $u_1 \geq -4.962$. This contradicts the estimate $u_1 \leq -4.97$. □

III.2 Lemma. Suppose E_1, E_2, and E_3 are constructed as in §II, and an isotopy is given that is linear at each stage on these three arcs and satisfies conditions
(1) and (2) as they apply to $E_1, E_2,$ and E_3. At each stage, if $z_1 = 601$, then
$$\max_{i=1,2} \text{yz-slope } E_3 > .001.$$

PROOF. Assume, temporarily, that $x_1 = x_2 = 0$, and that y_1, y_2, z_2 and E_3^1 are
chosen to maximize $\text{yz-slope of } E_3^1$. This can be done, given the correct values of
$y_1, y_2,$ and z_2, by raising the free end of E_3^1 until E_3^1 touches E_1^1 and E_2^1. Then,
due to the symmetry induced by $x_1 = x_2 = 0$, $\max \text{yz-slope } E_3^2$ can be realized in
the same way, without changing $y_1, y_2,$ or z_2 or moving E_3^1. Now the yz-projection
of E_3 is a single line segment. It is sufficient to prove that the case $z_1 = 601$ and
$\text{yz-slope } E_3 = .001$ is impossible.

An upper bound for d_1. For $i = 1, 2$, d_i is the distance between the two points
of E_i that project onto $(b_i, c_i) = (\text{yz-projection } E_3) \cap (\text{yz-projection } E_i)$. Use
$(y_1, z_1) = (-3, 601)$ to find $c_1 \geq 1.0019$. Then from the xz-projection of E_1,
$$d_1/10.0125 \leq (601 - 1.0019)/601 \text{ or } d_1 \leq 9.9959.$$

A lower bound for d_2. Use $(y_2, z_2) = (3, 50)$ to find $c_2 \leq 1.0041$ and $d_2 \geq 9.9951.$

An upper bound for d_2. Use $(y_1, z_1) = (3, 601)$ and $(y_2, z_2) = (-3, 50)$ to conclude
$$(9.9994 - d_2)/(9.9994 - d_1) \geq (-3 - .9196)/(-3 + .9933)$$
and $d_2 \leq 9.9926$. The two estimates for d_2 are contradictory.

What if the restriction $x_1 = x_2 = 0$ is relaxed? For given y_1, y_2, z_1, and z_2,
moving (x_1, y_1, z_1) and (x_2, y_2, z_2) along parallel to the x-axis cannot reduce
$max_{i=1,2} \text{yz-slope } E_3^1$. To see this, starting with $x_1 = x_2 = 0$, change x_2 to any
desired value, allowing E_3 to force movement of (x_1, y_1, z_1) parallel to the x-axis.
Then change x_1 to any value you wish. One leg of E_3 will be forced to increase in
slope. □

III.3 LEMMA. Suppose $E_1, E_2,$ and E_3 are constructed as in §II, and an isotopy
is given that is linear at each stage on these three arcs and satisfies conditions
(1) and (2) as they apply to $E_1, E_2,$ and E_3. At any stage, if $z_2 = 50$, then
$$\max_{i=1,2} \text{yz-slope } E_3^2 > .001.$$

PROOF. As in Lemma III.2 it is sufficient to assume $x_1 = x_2 = 0$ and prove that
the case $z_2 = 50$ and $\text{yz-slope } E_3^2 = .001$ is impossible.

Use $(y_2, z_2) = (-3, 50)$ to find $c_2 \geq .9981$ (where $b_2, c_2,$ and d_2 are defined as in
Lemma III.2 using E_3^2 in place of E_3) and $d_2 \leq 9.9964$. Use $(y_1, z_1) = (3, 601)$ to
find $c_1 \leq .9962$ and $d_1 \geq 9.9959$. From
$$(d_1 - 9.9994)/(d_2 - 9.9994) \geq (3 + .9933)/(3 - .9201)$$

it follows that $d_1 \leq 9.9937$. □

III.4 LEMMA. Suppose $E_1, E_2,$ and E_3 are constructed as in §II, and an isotopy
is given that is linear at each stage on these three arcs and satisfies conditions (1)
and (2) as they apply to $E_1, E_2,$ and E_3. At any stage, if $z_2 = 53$, then \n$$\max_{i=1,2} \text{yz-slope } E_3^3 > .001.$$

PROOF. As for Lemma III.2 it is enough to assume $x_1 = x_2 = 0$ and prove that
the case $z_2 = 53$ and $\text{yz-slope } E_3 = .001$ is impossible. Use $(y_1, z_1) = (-3, 601)$ to
find $c_1 \geq 1.0019; z_1 = 801$ to find $d_1 \leq 10.0000$; and $(y_2, z_2) = (3, 53)$ to find $c_2 \leq
1.0041$ and $d_2 \geq 10.0067$. Finally, use $(y_1, z_1) = (-3, 601)$ and $(y_2, z_2) = (3, 53)$
to conclude that \((d_2 - 9.9994)/(d_1 - 9.9994) \leq (-3 - 1.0379)/(-3 + 1.0034)\) and \(d_2 \leq 10.0006\). □

Let \(m_i = \min_{j=1,2} yz\text{-slope } E_i^j\) and \(M_i = \max_{j=1,2} yz\text{-slope } E_i^j\).

III.5 LEMMA. Suppose \(E_1, E_2, E_i,\) and \(E_{k(i)}\) are constructed as in §II, where \(i = 5, 6, 7, \ldots, 28, 29,\) or 30, and

\[
k(i) = \begin{cases}
6 & \text{if } i = 5, \\
3 & \text{if } i = 6, \\
i + 1 & \text{if } i = 7, 9, 11, \ldots, 27, \\
i - 1 & \text{if } i = 8, 10, 12, \ldots, 28, \\
32 & \text{if } i = 29, \\
29 & \text{if } i = 30,
\end{cases}
\]

or \(E_1, E_2, E_i,\) and \(E_{l(i)}\) are constructed as in §II where \(i = 6, 7, 8, \ldots, 27, 28, 29,\) and

\[
l(i) = \begin{cases}
i + 1 & \text{if } i = 6, 8, 10, \ldots, 28, \\
i - 1 & \text{if } i = 7, 9, 11, \ldots, 29.
\end{cases}
\]

Suppose also that an isotopy is given that is linear at each stage on \(E_1, E_2, E_i,\) and \(E_{k(i)}\) (or on \(E_1, E_2, E_i,\) and \(E_{l(i)}\)) and satisfies conditions (1) and (2) as they apply to these four arcs. Then, at any stage, if \(m_i \geq .00099,\) then \(M_{k(i)} \leq -1.4m_i\) (or if \(M_i \leq -.001,\) then \(m_{l(i)} \geq -1.4M_i\)).

PROOF. For a fixed \((i, j, k)\) with \(k = 1\) or 2, \(j = 3, 5, 6, 7, \ldots, 28, 29, 30, 32,\) and \(i = 1\) if \(j\) is odd, \(i = 2\) if \(j\) is even, let

\[(b, c) = (yz\text{-projection } E_i) \cap (yz\text{-projection } E_j^k).
\]

The smallest value for \(|b|\) occurs for \(E_2\) and \(E_{32}^1\) (or \(E_{32}^2\)) when \((y_2, z_2) = (-3, 50)\) and \(yz\text{-slope } E_{32}^1 = -2\) (assumption 2 from the beginning of §III is still in effect). Then \(|b| \geq .523\) and, for each \(i,\) each leg of \(E_{k(i)}\) must pass above \(E_i\) if \(i\) is odd (or below it if \(i\) is even) at a point at least 3.523 units from the \(xz\)-wall of attachment of \(E_i\) and at most 2.477 units from the \(xz\)-wall of attachment of \(E_{k(i)}\). Comparing heights at these crossover points we have

\[|M_{k(i)}| \geq (|m_i|3.523 - .00001)/2.477\]

or

\[|M_{k(i)}/m_i| \geq 3.523/2.477 - .00001/(2.477)(.00099) \geq 1.4.
\]

The same estimates hold for \(m_{l(i)}\). □

III.6 LEMMA. Suppose \(E_1, E_2, E_3, E_4, E_5,\) and \(E_6\) (or \(E_1, E_2, E_{29}, E_{30}, E_{31},\) and \(E_{32}\)) are constructed as in §II, and an isotopy is given that is linear at each stage on these six arcs and satisfies conditions (1) and (2) as they apply to these six arcs. Then, at any stage, if \(M_3 \geq .001,\) then \(M_6 \leq -1.3M_3\) (or if \(M_3 \leq .001,\) then \(M_{29} \leq -1.3M_{32}\)).

PROOF. Assume \(M_{32} \geq .001\) and \(M_{32} = yz\text{-slope } E_{32}^1\) (this will be seen to be harder than the case \(yz\text{-slope } E_{32}^2 = M_{32}\)). Let

\[(b, c) = (yz\text{-projection } E_{32}^1) \cap (yz\text{-projection } E_2).
\]
Then $b \leq 1.04$, so that E^1_{31} crosses under E^1_{32} at a point with y-coordinate at most 1.04. A comparison of heights at this crossover point yields
\[yz\text{-slope } E^1_{31} \geq yz\text{-slope } E^1_{32} - 0.000001/1.96 \geq 0.99 \text{ yz-slope } E^1_{32}. \]

Likewise, E^2_{30} crosses under E^1_{31} so that $yz\text{-slope } E^2_{30} \geq 0.99 (yz\text{-slope } E^1_{32})$ and E^1_{30} crosses under E^2_{30} so that $yz\text{-slope } E^1_{32} \geq 0.99 (yz\text{-slope } E^1_{32})$. By Lemma III.5,
\[M_{29} \leq -1.4M_{30} \leq -1.4(0.99)yz\text{-slope } E^1_{32} \leq -1.3 yz\text{-slope } E^1_{32}. \]

The first half of the lemma is proven in the same manner. □

IV. A negative answer to Question I.2. Let $H: ((\bigcup_{i=1}^{32} E_i) \times [0,1]) \to C$ be a linear isotopy fixed on $\bigcup_{i=1}^{32} Bd E_i$.

Case A. At each stage of H, $601 \leq z_1 \leq 801$ and $50 \leq z_2 \leq 53$. Then, by Lemma III.1, at each stage $yz\text{-slope } E^2_{32} \neq -2$ or $yz\text{-slope } E^1_{32} > .001$. But if $yz\text{-slope } E^1_{32} > .001$ then, by Lemma III.6, $M_{29} \leq -1.3M_{32}$, and by Lemma III.5,
\[m_{28} \geq -1.4M_{29} \geq 1.3(1.4)M_{32}, \]
\[M_{27} \leq -1.4m_{28} \leq -1.3(1.4)^2M_{32}, \]
\[\vdots \]
\[m_6 \geq -1.4M_7 \geq 1.3(1.4)^{23}M_{32}, \]
\[M_3 \leq -1.4m_6 \leq -1.3(1.4)^{24}M_{32} \leq -1.3(1.4)^{24}0.001 < -2. \]

Since $M_3 \leq -2$ is clearly impossible, it must be that $yz\text{-slope } E^2_{32} \neq -2$ at each stage of H and, symmetrically, $yz\text{-slope } E^1_{32} \neq -2$. Then H is not an unlinking.

Case B. For some t, at stage H_t, $z_1 = 601$, $z_2 = 50$, or $z_2 = 53$. Let t_0 be the smallest such t. If $z_1 = 601$ at stage H_{t_0}, by Lemma III.2, $M_3 > .001$. Lemma III.5 implies $M_6 \leq -1.3M_3$. Successive applications of Lemma III.6 lead to $M_{32} \leq -1.3(1.4)^{24}0.001 < -2$ which implies $yz\text{-slope } E^2_{32} = -2$ for some $t_1 \in (0, t_0)$, seen to be impossible in Case A.

If $z_2 = 50$, by Lemma III.3, $M_{32} > .001$ and using Lemmas III.5 and III.6, $M_3 < -2$, an impossibility.

If $z_2 = 53$, then $M_3 > .001$ and $M_{32} < -2$, seen to be impossible in Case A.

In summary, Cases A and B are exhaustive, Case B is vacuous, and a Case A isotopy is not an unlinking.

REFERENCES

DEPARTMENT OF MATHEMATICS, BLACKBURN COLLEGE, CARLINVILLE, ILLINOIS 62626