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fl-STABLE IDENTITIES

G. E. SIMONS

ABSTRACT. We show that an algebra over an infinite field generates a variety

with definable principal congruences if and only if it is commutative. A similar

result is proved for polynomial rings. The main tool used is the notion from

the theory of Pi-rings of an R-stable identity.

1. Introduction. A variety "V of (universal) algebras has definable principal

congruences (DPC) if there is a first order formula in the language of V that defines

principal congruences for all algebras in "V. There have been a number of papers

that deal with this concept for specific types of algebras. In particular, there are

complete characterizations of the varieties of lattices with DPC [4] and the finite

groups that generate varieties with DPC [1]. See [7] for further background.

This paper and [7] deal specifically with varieties of rings with DPC. A variety

V of rings has DPC if there is a first order formula 0(x, y) in the language of rings

such that for all rings R G "V and all x,y G R, x G RyR ■&■ 0(x, y), where RyR is

the two-sided ideal of R generated by y. The language of rings used is {+,-,-, 0,1},

so that all rings have a 1.

Any variety of commutative rings has DPC, since (f>ix,y) := 3^(x = yz) defines

two-sided ideals (principal congruences) in such a variety. In [7] it was shown that

if a ring R generates a variety with DPC, then R is a polynomial identity (PI) ring.

Results from PI theory were used to prove that if R is a semiprime ring, then V(i?)

has DPC if and only if R is commutative.

It is not true that a variety of rings has DPC only if it consists of commutative

rings, as the example in [7, Theorem 13] shows. The results of this paper were

motivated by attempts to modify this example in various ways. The example was

to take the ring F{X,Y)/({X, Y}3), where F is a finite field, F(X,Y) the free

(noncommutative) P-algebra on two generators and ({X, Y}3) the ideal generated

by all monomials in X and Y of degree 3. This ring is clearly noncommutative but

the variety it generates has DPC.

In this example, the number of indeterminates can be increased and the variety

generated still has DPC. If the ideal is changed to ({X, Y}m) with m > 3 then it

follows from [2, Theorem 2.4] that the variety generated does not have DPC. The

remainder of this paper deals with determining what happens when the finite field

F is replaced by infinite fields, such as Q or R, or by a ring such as Z.

2. iü-stable identities. The criterion we use for determining if a variety of

rings has DPC is the following theorem.
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THEOREM 2.1 [2]. If K is a class of rings, then V(/T) has DPC if and only
if there are integers n and k, with n > k > 1, and polynomials ri{x,y,z) and

Si(x,y,z), where 1 < i < k, x = (zi,... ,xk), y = ÜVi,- ■ ■ ,Un) such that K

satisfies the identity
n k

Y^Xiyzi =Y^riix,y,z)ySiix,y,z).
i=\ ¿=i

The example mentioned in §1 generates a variety "V with DPC since it satisfies

an identity of the form

J2xlyzl =y   ^2rixi,y,Zi)\ + I ̂ s(x¿,2/,z¿) J y.
i=l \i=l J        \t=i J

A first order statement <j>ix, y) defining principal two-sided ideals in this variety is

3xi, x2, z\,z2 ix = J2i=i Xiyzi), so that x G RyR if and only if it can be written in

the form ^2l=x Xiyzi, for all x,y G R and all R G "V.

To begin consideration of the questions of the previous section, we first examine

some special properties of polynomial identities of algebras over infinite fields.

For the remainder of the paper the term "algebra" is used in its ring-theoretic

sense.

DEFINITION [6, DEFINITION 2.3.8]. An identity / of a ring R is R-stable if / is
an identity of R[x].

We will be concerned with rings R such that all their identities are /2-stable.

The following lemma gives two well-known classes of rings with this property (see,

for example, [6, Exercises 2.3.4 and 2.3.8, p. 148]).

LEMMA 2.2. (i) If A is an algebra over an infinite field, then every identity of

A is Astable.

(ii) Every identity of R[x] is R[x]-stable.

For our purposes, the most useful property of instable identities is that they can

be decomposed into a sum of certain polynomials which are also identities of the

ring.
DEFINITION. A polynomial is completely homogeneous if each monomial is com-

posed of the same indeterminates with each indeterminate appearing the same num-

ber of times in each monomial. For example, x\x2x\x\x\ + x\x\x\ + x\x\x2xx\xi

is a completely homogeneous polynomial. Any polynomial can be written uniquely

as a sum of (maximal) completely homogeneous polynomials, called the completely

homogeneous components of the polynomial.

LEMMA 2.3 [5, PROPOSITION 3.15, p. 14]. If f is an R-stable identity of
R, then every completely homogeneous component of f is an R-stable identity of

R.

These are all the facts we need about .R-stable identities. Before stating the

main theorem, we have the following simple lemma:

LEMMA 2.4. Let A be a noncommutative algebra over a field F. If A satifies

an identity of the form

a\xyz + a2xzy + a^yxz + a^yzx + a$zxy + a&zyx = 0,

with ai G F, i = 1,..., 6, then ai = Oß, a2 = a^ and 03 = ao.
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PROOF. Putting x = y = z = 1 yields ai + a2 + 03 + 04 + 05 + ae = 0. Putting

x=lory = lor.s = l yields the three identities

(01 + a3 + 04)2/2 + (a2 + a5 + 00)22/ = 0,

(01 +02 + az)xz + (04 +05+ ae)zx = 0,

(ai + a2 + a5)xy + (a3 +04+ a6)2/x = 0.

These identities are all of the form ax\x2 - ax2x\ = 0 where a G F. If o ^ 0 then

we have xix2 — x2x\ = 0 since A is an algebra over a field, but then A would be

commutative, which it is not. Thus 0 = ai+(23 + 04 = 02+05 + 06 = 01+02 + 03 —

04 + as + a% = ai + 02 + 05 = 03 + 04 + 06, which imply that di = 06, 02 — 04 and

03 = a5.

THEOREM 2.5.   Let A be an algebra over a field F. Suppose that all identities

of A are Astable.  Then V(A) has DPC if and only if A is commutative.

PROOF. Assume that V~iA) has DPC and that A is noncommutative. By The-

orem 2.1, A satisfies an identity of the form

n fc

^xiyzl ='^2riix,y,z)ysiix,y,z)

¿=1 ¿=1

with n > k > 1 and r¿(x,y,z), Si{x,y,z) polynomials with integer coefficients.

By iterating this identity as required, we can assume that n > 2k. Since all the

identities of A are A-stable, Lemma 2.3 shows that we can restrict this identity to

monomials of degree 3 that contain exactly one y. Thus A satisfies the identity

n k

Y^XiVZi = ~Y^irioySi2 + rnySii + ri2ysl0)
¿=1 ¿=1

where rij is the sum of the monomials of r¿ of degree j with no y occurring, and

Sij is defined similarly. This identity can be written as

t=l

^2 Xiyzx = ysix, z) + r(x, z)y

k

t=i

/     PijXj + /    7ij Zj I y I    y     OimXm +   / ^ 7¿mzn

j=l j=l I        \m=l m=l

for some integers ßij, 7^,cT¿m,r¿m and polynomials r, s with integer coefficients.

Using Lemma 2.3 to further restrict to only those monomials involving x%, y and

Zj, i 7^ J, we obtain the following identity of A

0 = (piyxiZj + 4>2yzjXl + foxiZjp + (piZjXiy + ipijXiyZj + XljzJyxl

where 0^- = Em=i ßmiTmj and A¿J = £m=1 lmjGmi- Then Lemma 2.4 shows that

<£i = 04, 02 = 03, and 0¿J = A»j for i / j.
Similarly considering only the monomials involving Xi,y and Zi we obtain the

identity

Xiyzi = (j>'1yxlZi + (¡>'2yziXi + <j)3xlzly + <p'4zlxly + if)llxiyzl + Xlizlyxi.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



14 G. E. SIMONS

Again Lemma 2.4 shows that 4>[ = 04, 02 = 03, tpu - 1 = X^.
Define kxn matrices ß = ißij), 7 = ilij), o = (<7¿j), r = (ry) and nxn matrices

0 = iipij), X = (Àtj). Then 0 — A = /„ since 0¿j = A^- if ¿ ̂  j and iptJ = Xlt + 1.
By definition 0 = /3'r, A = a1^ so rank0 < minjrank/î, rankr} < k and similarly

rank A < k. Then n = rank/„ = rank(0 —A) < rank 0 +rank A < 2k, contradicting

our choice of n > 2k. Thus if V(A) has DPC then A must be commutative.

3. Applications. Our first result here is an immediate corollary of Theorem

2.5 that answers one of the questions from §1.

THEOREM 3.1. If A is an algebra over an infinite field, then V(A) has DPC
if and only if A is commutative.

PROOF. Lemma 2.2(i) and Theorem 2.5.

Thus if F is an infinite field and R = F{X,Y)/i{X,Y}3), then ViR) does not
have DPC. To determine what happens if F is replaced by Z requires a bit more

work.

THEOREM 3.2. Let A be an algebra over an infinite integral domain D. If A

is torsion free as a D module, then V (A) has DPC if and only if A is commutative.

PROOF. Assume that V(A) has DPC. Let A¿ be the localization of A at D\{0}

and let D¡ be the localization of D at D\{0}. Then Di is just the quotient field

of D, so it is infinite and Ai is an algebra over D\. By [3, Theorem 2, p. 52] A;

satisfies all the identities of A, so by Theorem 2.1 V(A;) has DPC. By Theorem

3.1 A\ is commutative. Since A is torsion free asafl module, the canonical map

A —> Ai is an injection, so A is commutative.

An immediate consequence of this result is that Z{X,Y)/i{X,Y}3) does not

generate a variety with DPC. This answers another of the questions of §1. Similar

results can also be proved for polynomial rings.

THEOREM 3.3. Let A be an algebra over afield F. Then V(A[x]) has DPC if
and only if A is commutative.

PROOF. Lemma 2.2(h) and Theorem 2.5.

As before, we can weaken the requirement that A be an algebra over a field.

THEOREM 3.4. Let R be a ring and C the subring of R generated by 1. If

annc[-ß, R] = 0, then V(Ä[x]) has DPC if and only if R is commutative.

PROOF. [R,R] is the commutator ideal of R, which is generated by {xy —

yx;x,y G R}. Since C C Z(R), a.nnc[R,R\ - {c G C;c[R,R] = 0}. It is straight-
forward to check that Lemma 2.4 and Theorem 2.5 hold with F replaced by C,

since the condition that annc[Ä, R] = 0 permits us to conclude that if c G C and

c(xy — yx) = 0, then xy = yx.
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