On certain groups of central type
HTML articles powered by AMS MathViewer
- by Alberto Espuelas
- Proc. Amer. Math. Soc. 97 (1986), 16-18
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831377-3
- PDF | Request permission
Abstract:
A finite group $G$ is a group of central type if there exists $\chi \in {\text {Irr}}\left ( G \right )$ with $\chi {\left ( 1 \right )^2} = \left | {G:Z\left ( G \right )} \right |$. It is known that, in such conditions, $G$ is solvable. Here some conditions assuring the nilpotence of groups of central type are given.References
- Frank R. DeMeyer and Gerald J. Janusz, Finite groups with an irreducible representation of large degree, Math. Z. 108 (1969), 145–153. MR 237629, DOI 10.1007/BF01114468
- Stephen M. Gagola Jr., Characters fully ramified over a normal subgroup, Pacific J. Math. 55 (1974), 107–126. MR 399237
- Robert B. Howlett and I. Martin Isaacs, On groups of central type, Math. Z. 179 (1982), no. 4, 555–569. MR 652860, DOI 10.1007/BF01215066
- I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594–635. MR 332945, DOI 10.2307/2373731
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 16-18
- MSC: Primary 20C15; Secondary 20D15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831377-3
- MathSciNet review: 831377