ON A QUESTION OF FEIT
PAMELA A. FERGUSON¹ AND ALEXANDRE TURULL

ABSTRACT. The following theorem is proved: Assume χ is an irreducible complex character of the finite group G and G is π-solvable where π is the set of prime divisors of $\chi(1)$. Then G contains an element of order $f(\chi)$.

Introduction. All groups in this paper are finite. The question referred to in the title is the following: Let χ be an irreducible complex character of a finite group G and let $f(\chi)$ be the smallest positive integer such that $\{\chi(g) \mid g \in G\} \subseteq \mathbb{Q}(\alpha)$ where α is a primitive $f(\chi)$th root of unity. Does G contain an element of order $f(\chi)$?

By using factorizations of quasi-primitive irreducible characters into products of characters we obtain the following result:

THEOREM. Assume χ is an irreducible complex character of a finite group G and G is π-solvable where π is the set of primes dividing $\chi(1)$. Then G contains an element of order $f(\chi)$.

This theorem yields the following Corollary which was proved independently by Amit and Chillag [1].

COROLLARY. If χ is an irreducible character of a solvable group G, then G contains an element of order $f(\chi)$.

We wish to thank Professor I. M. Isaacs and the referee for carefully reading the original manuscript and making helpful suggestions. In particular, the notation $f(\chi)$ was suggested by Professor Isaacs in honor of W. Feit.

1. We introduce some definitions and notation. Let σ be a nonempty set of primes and h be an element in a group G, h is a σ-element if $\langle h \rangle$ is a σ-group. Any $g \in G$ may be written uniquely as $g = g_{\sigma}g_{\sigma'}$, where g_{σ} is a σ-element, $g_{\sigma'}$ is a σ'-element and both g_{σ} and $g_{\sigma'}$ are powers of g. The elements g_{σ} and $g_{\sigma'}$ are called the σ-part and σ'-part of g.

If Ω is a Galois extension of the field Ω_1, $G(\Omega/\Omega_1)$ denotes the Galois group of Ω over Ω_1.

If $\chi \in \text{Irr}(G)$ and σ is a set of primes, then χ is σ-special provided that $\chi(1)$ is a σ-number and that for all subnormal subgroups S of G and all irreducible constituents θ of χ_S, the determinantal order $O(\theta)$ is a σ-number.

PROOF OF THEOREM. The result is clear for linear characters so by induction on $\chi(1)$ we assume that the theorem is true for irreducible characters Φ and groups H satisfying the hypothesis if $\Phi(1) < \chi(1)$. If $\chi = \Phi^G$ where $\Phi \in \text{Irr}(H)$ and

1 Partially supported by a National Science Foundation Grant.
|H| < |G|, then \(f(\chi) = f(\Phi) \). Since \(\Phi(1) \) is a proper divisor of \(\chi(1) \), \(H \) contains an element of order \(f(\Phi) \) and the theorem follows. Thus, we may assume that \(\chi \) is primitive.

Let \(f(\chi) = \prod_{i=1}^{n} p_i^{a_i} \) where \(a_i \geq 1 \) and the \(p_i \) are distinct primes. Let \(p_i^r \) denote the order of a Sylow \(p_i \)-subgroup of \(G \) for \(i = 1, \ldots, n \). Then \(\Omega_i \) denotes the field of \((|G|/p_i^{r-a_i+1}) \)-th roots of unity over \(Q \). Let \(\Omega \) be a field of \(|G| \)-th roots of unity over \(Q \). By the definition of \(f(\chi) \), we may choose a \(\theta_i \in G(\Omega/\Omega_i) \) such that \(\theta_i \) does not leave \(\chi \) invariant for \(i = 1, \ldots, n \). We first show that no product of an odd number of distinct elements in \(\{\theta_1, \ldots, \theta_n\} \) leaves \(\chi \) invariant. Assume otherwise; then since \(G(\Omega/Q) \) is abelian, we may choose notation so that \(\beta = \prod_{i=1}^{r} \theta_i \) leaves \(\chi \) invariant, for some \(r \geq 1 \).

Suppose \(p_i | \chi(1) \) for some \(i = 1, \ldots, r \). Since \(G(\Omega/Q) \) is abelian, we may assume \(p_i | \chi(1) \). By [4, Corollary 2.7], \(\chi = \chi_1 \Phi \) where \(\chi_1 \) and \(\Phi \) are primitive irreducible \(p_1 \)-special and \(p'_1 \)-special characters. \(G \) is \(p_1 \)-solvable, hence \(p'_1 \)-separable, and so \(f(\Phi) \) is a \(p'_1 \)-number by [3, Proposition 6.3(a)].

If \(\theta \in G(\Omega/Q) \) and \(\sigma \) is any set of primes, then it is direct to see that whenever \(\gamma \) is an irreducible \(\sigma \)-special character so is \(\theta \circ \gamma \). Hence \(\beta \circ \chi_1 \) and \(\beta \circ \Phi \) are \(p_1 \)-special and \(p'_1 \)-special. Now \(\chi_1 \Phi = \chi = \beta \circ \chi = (\beta \circ \chi_1)(\beta \circ \Phi) \) and [4, Theorem 2.2] yield \(\chi_1 = \beta \circ \chi_1 \). By [3, Proposition 6.3(a)], \(f(\chi_1) \) is a \(p_1 \)-number so \(\theta_i \circ \chi_1 = \chi_1 \) for \(i = 2, \ldots, r \). Since \(G(\Omega/Q) \) is abelian, it follows that \(\chi_1 = \beta \circ \chi_1 = \theta_i \circ \chi_1 \). Now \(f(\Phi) \) a \(p'_1 \)-number implies that \(\theta_i \circ \Phi = \Phi \). However, \(\theta_i \circ \chi = (\theta_i \circ \chi_1)(\theta_i \circ \Phi) = \chi_1 \Phi = \chi \) contradicts the choice of \(\theta_i \). Therefore, \(\prod_{i=1}^{r} \theta_i \circ \chi(1) = 1 \).

Now set \(p = p_1 \). By [4, Corollary 2.7], \(\chi = \Phi \lambda \), where \(\Phi \) and \(\lambda \) are irreducible, primitive \(\pi \)-special and \(\pi' \)-special characters. Since \(\chi(1) \) is a \(\pi \)-number, \(\lambda \) is linear. As in the previous paragraph, \(\beta \circ \Phi \) and \(\beta \circ \lambda \) are \(\pi \)-special and \(\pi' \)-special. Thus, \(\Phi \lambda = \chi = \beta \circ \chi = (\beta \circ \Phi)(\beta \circ \lambda) \) and [4, Theorem 2.2] imply that \(\lambda = \beta \circ \lambda \). Since \(\beta \) fixes \(\lambda \), \(\beta \) fixes all powers of \(\lambda \). In particular, \(\beta \) fixes \(\lambda_p \) and \(\lambda_{p'} \), where \(\lambda_p \) is the \(p \)-part of \(\lambda \) and \(\lambda_{p'} \) is the \(p' \)-part. It is clear that \(f(\lambda_p) \) is a \(p \)-number and \(f(\lambda_{p'}) \) is a \(p' \)-number. Hence, \(\theta_i \circ \lambda_p = \lambda_p \) for \(i = 2, \ldots, r \) and \(\theta_1 \circ \lambda_{p'} = \lambda_{p'} \). Since \(G(\Omega/Q) \) is abelian, \(\lambda_p = \beta \circ \lambda_p = \theta_1 \circ \lambda_p \). By [3, Proposition 6.3(a)], \(f(\Phi) \) is a \(\pi \)-number. Thus, \(\theta_1 \circ \Phi = \Phi \) and \(\theta_1 \circ \chi = (\theta_1 \circ \Phi)(\theta_1 \circ \lambda_p)(\theta_1 \circ \lambda_{p'}) = \Phi \lambda_p \lambda_{p'} = \chi \). Again this is a contradiction. Therefore, no product of an odd number of distinct \(\theta_i \) leaves \(\chi \) invariant. Hence, by [2, Theorem 2], there is an element \(g \in G \) such that \(\chi(g) \notin \Omega_i \) for any \(i = 1, \ldots, n \). Thus, \(f(\chi) \mid \langle g \rangle \).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FLORIDA
33124