Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Boundary continuity of holomorphic functions in the ball

Author: Frank Beatrous
Journal: Proc. Amer. Math. Soc. 97 (1986), 23-29
MSC: Primary 32A40; Secondary 30D40, 32A30
MathSciNet review: 831380
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that any holomorphic function on the unit ball of $ {{\mathbf{C}}^n}$ with $ n$th partial derivatives in the Hardy class $ {H^1}$ has a continuous extension to the closed unit ball, and that the restriction to any real analytic curve in the boundary which is nowhere complex tangential is absolutely continuous.

References [Enhancements On Off] (What's this?)

  • [1] Frank Beatrous Jr., Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), no. 1, 91–116. MR 812605,
  • [2] F. Beatrous and J. Burbea, Sobolev-type imbedding theorems for harmonic Hardy-Sobolev spaces, Analysis and geometry 1987 (Taejŏn, 1987) Korea Inst. Tech., Taejŏn, 1987, pp. 55–122. MR 1022241
  • [3] R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 0412721,
  • [4] Peter L. Duren, Theory of 𝐻^{𝑝} spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • [5] I. Graham, An $ {H^p}$ space theorem for the radial derivatives of holomorphic functions on the unit ball in $ {{\mathbf{C}}^n}$, preprint.
  • [6] Ian Graham, The radial derivative, fractional integrals, and comparative growth of means of holomorphic functions on the unit ball in 𝐶ⁿ, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 171–178. MR 627757
  • [7] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Math. USSR-Sb. 7 (1969), 597-616.
  • [8] Steven G. Krantz, Analysis on the Heisenberg group and estimates for functions in Hardy classes of several complex variables, Math. Ann. 244 (1979), no. 3, 243–262. MR 553255,
  • [9] J. E. Littlewood, Lectures on the Theory of Functions, Oxford University Press, 1944. MR 0012121
  • [10] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series. (II), Proc. London Math. Soc. 42 (1936), 52-89.
  • [11] Enrique Ramírez de Arellano, Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis, Math. Ann. 184 (1969/1970), 172–187 (German). MR 0269874,
  • [12] Walter Rudin, Function theory in the unit ball of 𝐶ⁿ, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32A40, 30D40, 32A30

Retrieve articles in all journals with MSC: 32A40, 30D40, 32A30

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society