Poisson semigroups and singular integrals
HTML articles powered by AMS MathViewer
- by Björn E. J. Dahlberg
- Proc. Amer. Math. Soc. 97 (1986), 41-48
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831384-0
- PDF | Request permission
Abstract:
Let $D \subset {{\mathbf {R}}^n}$ be a Lipschitz domain and consider the bilinear form $\int _D {u\left ( {\partial v/\partial y} \right )dP}$. We show that the form is bounded if $v$ is harmonic with boundary values in ${L^2}$, if $u$ is smooth with its nontangential maximal function in ${L^2}$ and $\int _D {{\text {dist}}\left \{ {P,\partial D} \right \}{{\left | {{\text {grad }}u} \right |}^2}dP < \infty }$.References
- A.-P. Calderón, Commutators, singular integrals on Lipschitz curves and applications, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 85–96. MR 562599
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- Björn E. J. Dahlberg, Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math. 67 (1980), no. 3, 297–314. MR 592391, DOI 10.4064/sm-67-3-297-314 —, On the absolute continuity of elliptic measures, Preprint, Dept. of Math., Chalmers Univ. of Technology and Univ. of Göteborg, 1984-28. —, Real analysis and potential theory, Proc. Internat. Congress Math. Warsaw, 1983. B. E. J. Dahlberg and C. E. Kenig, Hardy spaces and the ${L^p}$-Neumann problem for Laplace’s equation in a Lipschitz domain, Ann. of Math. (to appear).
- B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota, The Dirichlet problem for the biharmonic equation in a Lipschitz domain, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, 109–135 (English, with French summary). MR 865663
- E. B. Fabes, M. Jodeit Jr., and N. M. Rivière, Potential techniques for boundary value problems on $C^{1}$-domains, Acta Math. 141 (1978), no. 3-4, 165–186. MR 501367, DOI 10.1007/BF02545747
- David S. Jerison and Carlos E. Kenig, The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 203–207. MR 598688, DOI 10.1090/S0273-0979-1981-14884-9
- Carlos E. Kenig, Recent progress on boundary value problems on Lipschitz domains, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 175–205. MR 812291, DOI 10.1090/pspum/043/812291
- Yves Meyer, Régularité des solutions des équations aux dérivées partielles non linéaires (d’après J.-M. Bony), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 293–302 (French). MR 636530
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 G. C. Verchota, Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains, Thesis, Univ. of Minnesota, 1982; J. Funct. Anal. (to appear).
- Kôsaku Yosida, Functional analysis, 5th ed., Grundlehren der Mathematischen Wissenschaften, Band 123, Springer-Verlag, Berlin-New York, 1978. MR 0500055
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 41-48
- MSC: Primary 42B25; Secondary 31B20, 42B20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831384-0
- MathSciNet review: 831384