A property of the embedding of $c_ 0$ in $l_ \infty$
HTML articles powered by AMS MathViewer
- by A. K. Snyder
- Proc. Amer. Math. Soc. 97 (1986), 59-60
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831387-6
- PDF | Request permission
Abstract:
This note proves that if $X$ is an FK space containing $\{ {\delta ^n}\}$ and if $X + {c_0} = {l_\infty }$, then $X = {l_\infty }$. The result is stronger than the fact that ${c_0}$ is not complemented in ${l_\infty }$, and shows that separability can be dropped in a similar theorem of Bennett and Kalton. The proof depends on Schurโs theorem and the fact that ${l_\infty }$ is a GB space to show that $X$ must be barrelled in ${l_\infty }$.References
- G. Bennett and N. J. Kalton, $FK$-spaces containing $c_{0}$, Duke Math. J. 39 (1972), 561โ582. MR 310597, DOI 10.1215/S0012-7094-72-03963-4
- G. Bennett and N. J. Kalton, Inclusion theorems for $K$-spaces, Canadian J. Math. 25 (1973), 511โ524. MR 322474, DOI 10.4153/CJM-1973-052-2
- N. J. Kalton, Some forms of the closed graph theorem, Proc. Cambridge Philos. Soc. 70 (1971), 401โ408. MR 301476, DOI 10.1017/s0305004100050039
- Joram Lindenstrauss, On complemented subspaces of $m$, Israel J. Math. 5 (1967), 153โ156. MR 222616, DOI 10.1007/BF02771101
- Albert Wilansky, Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978. MR 518316
- Albert Wilansky, Summability through functional analysis, North-Holland Mathematics Studies, vol. 85, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemรกtica [Mathematical Notes], 91. MR 738632
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 59-60
- MSC: Primary 46A45; Secondary 40D25, 40H05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831387-6
- MathSciNet review: 831387