On the stability of almost convex functions
HTML articles powered by AMS MathViewer
- by J. C. Parnami and H. L. Vasudeva
- Proc. Amer. Math. Soc. 97 (1986), 67-70
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831389-X
- PDF | Request permission
Abstract:
Let ${\mathbf {R}}$ denote the set of real numbers and $I$ an open interval of ${\mathbf {R}}$. A function $f:I \to R$ is said to be almost $\delta$-convex iff $f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y) + \delta$ holds for all $(x,y) \in I \times I\backslash N$, where $N \subset I \times I$ is of measure zero, each $t \in [0,1]$ and some $\delta \geq 0$. It is proved that such a function is uniformly close to a convex function almost everywhere.References
- N. G. de Bruijn, On almost additive functions, Colloq. Math. 15 (1966), 59–63. MR 196026, DOI 10.4064/cm-15-1-59-63
- Piotr W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76–86. MR 758860, DOI 10.1007/BF02192660 P. Erdös, Colloq. Math. 7 (1960), 311.
- D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821–828. MR 49962, DOI 10.1090/S0002-9939-1952-0049962-5
- Wolfgang B. Jurkat, On Cauchy’s functional equation, Proc. Amer. Math. Soc. 16 (1965), 683–686. MR 179496, DOI 10.1090/S0002-9939-1965-0179496-8
- Marek Kuczma, Almost convex functions, Colloq. Math. 21 (1970), 279–284. MR 262436, DOI 10.4064/cm-21-2-279-284
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 67-70
- MSC: Primary 39C05; Secondary 26A51
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831389-X
- MathSciNet review: 831389