Uniform differentiability, compactness, and $l^ 1$
HTML articles powered by AMS MathViewer
- by Russell G. Bilyeu and Paul W. Lewis
- Proc. Amer. Math. Soc. 97 (1986), 87-92
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831393-1
- PDF | Request permission
Abstract:
In an earlier paper the authors have shown that conditionally compact subsets of ${l^1}$ are characterized by uniform Gâteaux differentiability. Results in this paper show that this equivalence characterizes spaces which contain ${l^1}$.References
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- Russell G. Bilyeu and Paul W. Lewis, Uniform differentiability, uniform absolute continuity and the Vitali-Hahn-Saks theorem, Rocky Mountain J. Math. 10 (1980), no. 3, 533–557. MR 590217, DOI 10.1216/RMJ-1980-10-3-533
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094, DOI 10.1007/BFb0082079
- S. P. Fitzpatrick, Continuity of nonlinear monotone operators, Proc. Amer. Math. Soc. 62 (1976), no. 1, 111–116 (1977). MR 425687, DOI 10.1090/S0002-9939-1977-0425687-6
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8
- John Rainwater, Local uniform convexity of Day’s norm on $c_{0}(\Gamma )$, Proc. Amer. Math. Soc. 22 (1969), 335–339. MR 243325, DOI 10.1090/S0002-9939-1969-0243325-8
- R. T. Rockafellar, Local boundedness of nonlinear, monotone operators, Michigan Math. J. 16 (1969), 397–407. MR 253014, DOI 10.1307/mmj/1029000324
- R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216. MR 262827, DOI 10.2140/pjm.1970.33.209
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411
- S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1970/71), 173–180. MR 306873, DOI 10.4064/sm-37-2-173-180
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 87-92
- MSC: Primary 46B05; Secondary 46B20, 46B25, 46G05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831393-1
- MathSciNet review: 831393