Composition of linear fractional transformations in terms of tail sequences
HTML articles powered by AMS MathViewer
- by Lisa Jacobsen
- Proc. Amer. Math. Soc. 97 (1986), 97-104
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831395-5
- PDF | Request permission
Abstract:
We consider sequences $\left \{ {{s_n}} \right \}$ of linear fractional transformations. Connected to such a sequence is another sequence $\left \{ {{s_n}} \right \}$ of linear fractional transformations given by \[ {S_n} = {s_1} \circ {s_2} \circ \cdots \circ {s_n},\quad n = 1,2,3, \ldots .\] We introduce a new way of representing ${s_n}$ (in terms of so-called tail sequences). This representation is established to give nice expressions for ${S_n}$. It can be seen as a generalization of the canonical form for ${s_n}$, which gives nice expressions for \[ {T_k} = \underbrace {{s_n} \circ {s_n} \circ \cdots \circ {s_{n.}}}_{(k{\text { terms)}}}\]References
- Lisa Jacobsen, Some periodic sequences of circular convergence regions, Analytic theory of continued fractions (Loen, 1981) Lecture Notes in Math., vol. 932, Springer, Berlin-New York, 1982, pp. 87–98. MR 690456 —, Modified approximants for continued fractions. Construction and applications, Kgl. Norske Vid. Selsk. Skr. 3 (1983), 1-46.
- Lisa Jacobsen, Nearness of continued fractions, Math. Scand. 60 (1987), no. 2, 129–147. MR 914330, DOI 10.7146/math.scand.a-12176
- Oskar Perron, Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957 (German). MR 0085349
- W. T. Scott and H. S. Wall, A convergence theorem for continued fractions, Trans. Amer. Math. Soc. 47 (1940), 155–172. MR 1320, DOI 10.1090/S0002-9947-1940-0001320-1
- Haakon Waadeland, Tales about tails, Proc. Amer. Math. Soc. 90 (1984), no. 1, 57–64. MR 722415, DOI 10.1090/S0002-9939-1984-0722415-5
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 97-104
- MSC: Primary 30B70; Secondary 40A15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831395-5
- MathSciNet review: 831395