Complete metrics conformal to the hyperbolic disc
HTML articles powered by AMS MathViewer
- by J. Bland and Morris Kalka
- Proc. Amer. Math. Soc. 97 (1986), 128-132
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831400-6
- PDF | Request permission
Abstract:
In this paper we study complete metrics conformal to the hyperbolic disc. We show that any smooth function $K$ bounded between two negative constants is the curvature of such a metric. We also show that if $K \geq 0$ near the boundary, $K$ cannot be the curvature of such a metric.References
- Patricio Aviles and Robert McOwen, Conformal deformations of complete manifolds with negative curvature, J. Differential Geom. 21 (1985), no. 2, 269–281. MR 816672
- John S. Bland, Local boundary regularity of the canonical Einstein-Kähler metric on pseudoconvex domains, Math. Ann. 263 (1983), no. 3, 289–301. MR 704295, DOI 10.1007/BF01457132 R. Courant and D. Hilbert, Methods of mathematical physics. II, Interscience, New York, 1962.
- Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 431040, DOI 10.1002/cpa.3160280203
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 128-132
- MSC: Primary 53A30; Secondary 35J15, 58G30
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831400-6
- MathSciNet review: 831400