Partitions and diamond
HTML articles powered by AMS MathViewer
- by Pierre Matet
- Proc. Amer. Math. Soc. 97 (1986), 133-135
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831401-8
- PDF | Request permission
Corrigendum: Proc. Amer. Math. Soc. 101 (1987), 519-520.
Abstract:
We restate the diamond principle in terms of partitions, and we show that a weakening of diamond follows from the generalized continuum hypothesis.References
- F. G. Abramson, L. A. Harrington, E. M. Kleinberg, and W. S. Zwicker, Flipping properties: a unifying thread in the theory of large cardinals, Ann. Math. Logic 12 (1977), no. 1, 25–58. MR 460120, DOI 10.1016/0003-4843(77)90005-5
- Keith J. Devlin, Variations on $\diamondsuit$, J. Symbolic Logic 44 (1979), no. 1, 51–58. MR 523488, DOI 10.2307/2273703
- Thomas J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1972/73), 165–198. MR 325397, DOI 10.1016/0003-4843(73)90014-4
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- R. Björn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0
- Kenneth Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299–306. MR 314619, DOI 10.1090/S0002-9947-1972-0314619-7
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 133-135
- MSC: Primary 03E05; Secondary 03E50
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831401-8
- MathSciNet review: 831401