THE NORMAL EXTENSIONS OF SUBGROUP TOPOLOGIES

BRADD CLARK AND VICTOR SCHNEIDER

Abstract. Let H be a topological group contained in a group G. A topology which makes G a topological group inducing the given topology on H is called an extending topology. The set of all extending topologies forms a complete semilattice in the lattice of group topologies on G. The structure of this semilattice is studied by considering normal subgroups which intersect H in the identity.

Let G be a group and \mathcal{L} the collection of continuous topologies on G. If $\{T_\alpha\}_{\alpha \in \Gamma}$ is any collection of topologies in \mathcal{L}, we can create a new topological group $\mathcal{G} = \prod_{\alpha \in \Gamma} (G, T_\alpha)$. The embedding of G into \mathcal{G} along the diagonal is an algebraic embedding. The relative topology on G in \mathcal{G} is the supremum topology on G relative to $\{T_\alpha\}_{\alpha \in \Gamma}$. Since G is a topological group we see that the subgroup G is also a topological group when given this topology. Hence \mathcal{L} is closed under the operation $T_\alpha \vee T_\beta$ where $T_\alpha \vee T_\beta$ denotes the supremum topology T_α and T_β.

Now suppose T_α and T_β are in \mathcal{L} and $\mathcal{B} \subseteq \mathcal{L}$ is the collection of all topologies T_γ in \mathcal{L} that satisfy $T_\gamma \subseteq T_\alpha$ and $T_\gamma \subseteq T_\beta$. $\mathcal{B} \neq \emptyset$ since the indiscrete topology on G is in \mathcal{L}. We define $T_\alpha \wedge T_\beta = (\bigvee_{\gamma \in \mathcal{B}} T_\gamma)$. Certainly \mathcal{L} is closed under \wedge and hence $(\mathcal{L}, \vee, \wedge)$ forms a complete lattice. It should be noted that this lattice is different from the usual lattice of topologies on a set X since the intersection of two group topologies may not be a group topology.

Let H be a topological group contained in a group G. A topology which makes G a topological group inducing the given topology on H is called an extending topology. The set of all extending topologies from H to G, \mathcal{E}, is a complete subsemilattice of the complete lattice of group topologies on G. The purpose of this paper is to further study \mathcal{E}.

Definition. A group topology for H is said to be translatable if and only if for every neighborhood U of e in H and every $g \in G$, the set gUg^{-1} contains a neighborhood of e in H. If t is a translatable topology on H we define the translation topology T_t^H to be that topology on G which has $\{gU | g \in U \text{ and } U \in t\}$ as a basis.

One way to create a topology on G is to find a homomorphism from G to a topological group G'. The weak topology on G relative to this homomorphism will make G into a topological group also. Occasionally this topology will be an extending topology. Let H be a subgroup of G endowed with the translatable
topology t. Let f be a homomorphism from G onto the topological group G' and let $H' = f(H)$. Let E be the closure of $\{e\}$ in H.

THEOREM 1. The weak topology on G induced by f is an extending topology for H if and only if f is continuous and open (as a map from H to H') and $H \cap \ker f \subseteq E$.

Proof. Let T be the weak topology on G induced by f and suppose that $T \in \mathcal{E}$. If $x \in H \cap \ker f$ and U is an open neighborhood of x in H, then there exists an open set U' in H' such that $U = H \cap f^{-1}(U')$. But $e' \in U'$ and hence $e \in U$.

Now suppose that $H \cap \ker f \subseteq E$ and f is continuous and open as a map from H to H'. Let $U \in t$. Then $U' = f(U)$ is open in H'. Let $x \in H \cap f^{-1}(U')$. We can find a $y \in U$ such that $f(x) = f(y)$ and hence $xy^{-1} \in \ker f$. So if $xy^{-1} \in V$ and $V \in t$, then $e \in V$. But this means that $x \in U$ and hence $U = H \cap f^{-1}(U')$.

Let $N = \ker f$. Obviously, N is a normal subgroup with $N \cap H = \{e\}$. Such subgroup structure occurs frequently (e.g., if G has a presentation of the form $\{a, b|a^n = b^m\}$, then $H = [G, G]$ and $N = Z(G)$ satisfy this condition). Since we are trying to create new extending topologies on G, we may hope that any extending topology on G will induce a topology on G/N that can be used to create a weak topology on G that also extends the topology on H. In general this will not work since we cannot be sure that $f|_H$ is a homeomorphism where $f: G \to G/N$ is the natural map.

As an example of this, suppose that $G = \mathbb{R}^1$ and $N = \mathbb{Q}$. If H is a linear complement to \mathbb{Q} when \mathbb{R}^1 is regarded as a vector space over \mathbb{Q}, then the usual topology on H will be translatable since \mathbb{R}^1 is abelian. But the weak topology on \mathbb{R}^1 relative to the natural map $f: \mathbb{R}^1 \to \mathbb{R}^1/\mathbb{Q}$ is the indiscrete topology.

Suppose that H is any subgroup and that N is a normal subgroup with the property that $H \cap N = \{e\}$. Certainly the multiplication map $H \times N \to HN$ is bijective. If H and N are assigned group topologies, then this map induces a topology on HN, called the product topology, which may or may not be a group topology for HN. We note that a group topology for HN is a product topology if and only if the map of H to HN/N is a homeomorphism.

THEOREM 2. Suppose H and N are endowed with topologies such that the product topology for HN is a group topology. Then this topology for HN is translatable if the given topologies for both H and N are translatable. On the other hand, if the topology for HN is translatable, then the topology for N is translatable.

We observe that the indiscrete topology on a normal subgroup is always translatable. If H is normal, then the product topology for HN will be a group topology. So if t is a translatable topology for H and $N \cap H = \{e\}$, then there is an extending topology which has the indiscrete topology as the relative topology on N.

The collection of normal subgroups \mathcal{N} with the property that if $n \in \mathcal{N}$ then $n \cap H = \{e\}$ is a nonempty collection. Thus if we partially order \mathcal{N} by set inclusion, we can use Zorn's Lemma to find maximal normal subgroups N with $N \cap H = \{e\}$. As we shall soon see, these maximal subgroups will give us the best insight to the structure of \mathcal{E}.
Let H be normal. Then $T \in \mathcal{E}$ where T is generated using $\{ gU | U \in \mathcal{T} \times \{ N, \emptyset \}, g \in G \}$ as a basis. Let τ_N be the topology on G/H which is generated by using the natural map from (G, T) to $(G/H, \tau_N)$. The set of topologies on G/H which make G/H into a topological group and which lie between τ_N and the discrete topology on G/H forms a lattice L_N contained in the lattice of all continuous topologies that exist on G/H. If n is a normal subgroup of G with $n \subset N$, then a moment’s reflection will show that $L_n \subset L_N$ where L_n is defined in the same fashion as L_N.

Theorem 3. If $N \subset G$ is a normal subgroup with $N \cap H = \{ e \}$, then the semi-lattice \mathcal{E} contains a sublattice isomorphic to L_N.

Proof. As we have seen, $T \in \mathcal{E}$ and the natural map from (G, T) to $(G/H, \tau_N)$ puts a continuous topology on G/H. By [1] we know that for every topology τ in L_N there is a unique topology in \mathcal{E} that induces τ and is finer than T. Let \mathcal{L}_N be this collection of topologies. Since \mathcal{L}_N includes both T and the translation topology and since we have an order-preserving bijection between \mathcal{L}_N and L_N, it is clear that \mathcal{L}_N is isomorphic to L_N.

As an example of this theorem’s applications, let G be the torus knot group with the presentation $\{ a, b | a^n = b^m \}$ with $(n, m) = 1$. We place the residually finite topology on G as described in [2]. If $H = [G, G]$, we then have a relative topology defined on H which we call ι. Let N be the center of G. Of course, any group topology placed on the center of a group will be a translatable topology. In this example N is isomorphic to \mathbb{Z} and clearly $N \cap H = \{ e \}$. $G/H \cong \mathbb{Z}$ is the homology group associated with the torus knot space, and the image of N in G/H is the subgroup $\{ nmx | x \in \mathbb{Z} \}$. The indiscrete topology on N and hence the indiscrete topology on the subgroup $\{ nmx | x \in \mathbb{Z} \}$ translates to make G and G/H into topological groups. Let $\{ p_1, p_2, \ldots, p_j \}$ be the collection of primes that divide the composite number nm, and let \mathcal{P} be any collection of primes that contain $\{ p_1, p_2, \ldots, p_j \}$ as a subset. There is a unique topology $\tau_{\mathcal{P}}$ on \mathbb{Z} which is the supremum topology of $\{ p$-adic topology $| p \in \mathcal{P} \}$. If $\mathcal{P} \neq \mathcal{P}'$, then $\tau_{\mathcal{P}} \neq \tau_{\mathcal{P}'}$. Therefore \mathcal{E} contains uncountably many topologies corresponding to the $\tau_{\mathcal{P}}$ topologies on \mathbb{Z}. Of course, there are coarser topologies on G/H which fail to be Hausdorff, but which also have their corresponding topology in \mathcal{E}. As pointed out in [3], there are topologies on G/H which are finer than the subgroup topology, but which are not the discrete topology. They also have their counterparts in \mathcal{E}. Although we have discovered many topologies in $\mathcal{L}_N \subset \mathcal{E}$ and their relationship to each other, we have not found the ultimate structure of \mathcal{E}. In this example we note that the residually finite topology on G is not an element of \mathcal{L}_N.

If $T \in \mathcal{L}_N \subset \mathcal{E}$ for some normal subgroup $N \subset G$, we shall call T a normal extension topology. One might hope that every topology in \mathcal{E} is a normal extension topology. This is unfortunately not the case. Let $G = \mathbb{R}^1$ and $H = \mathbb{Z} \subset \mathbb{R}^1$. We place the discrete topology ι on \mathbb{Z} and consider the semilattice \mathcal{E}.

Let N be a linear complement to \mathbb{Q} when \mathbb{R}^1 is regarded as a vector space over \mathbb{Q}. Suppose that $n/m \in N \cap \mathbb{Q}$. Certainly $n \in N \cap \mathbb{Z}$ and hence $N \cap \mathbb{Q} = \{ 0 \}$. The coarsest normal extension topology we can obtain on \mathbb{R}^1 using N is the topology
obtained by placing the indiscrete topology on N, the discrete topology on Z, the resulting product topology on $N \times Z$ and translating this topology throughout R^1. But if we place the indiscrete topology on N, the usual topology on Q, the resulting product topology on $N \times Q$ and translate this topology throughout R^1, we will obtain a coarser topology.

The authors wish to thank Douglass Grant and the referee for helpful comments with respect to this paper.

REFERENCES