Points de continuité d’une fonction séparément continue
HTML articles powered by AMS MathViewer
- by Gabriel Debs
- Proc. Amer. Math. Soc. 97 (1986), 167-176
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831408-0
- PDF | Request permission
Abstract:
Let $f:X \times Y \to {\mathbf {R}}$ be a separately continuous function defined on the product of a Baire space $X$ and a Hausdorff compact space $Y$. We prove that $f$ is jointly continuous at any point of $G \times Y$, for a dense ${G_\delta }$ subset $G$ of $X$, under one of the following assumptions: (i) If the Banach space $\mathcal {C}(Y)$ is weakly $\mathcal {K}$-analytic; or (ii) if $X$ contains a dense subset which is $\mathcal {K}$-analytic.References
- Jean Calbrix and Jean-Pierre Troallic, Applications séparément continues, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 13, A647–A648 (French, with English summary). MR 534521 G. Choquet, Lectures on analysis, Vol. 1, Benjamin, New York and Amsterdam, 1969.
- Jens Peter Reus Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), no. 3, 455–461. MR 612739, DOI 10.1090/S0002-9939-1981-0612739-1 —, Remarks on Namioka spaces and R. E. Johnson’s theorem on the norm separability of the range of certain mappings (a paraître). —, Theorems of Namioka and Johnson type for u.s.c.o. set-valued mappings (a paraître). R. Deville, Parties faiblement de Baire dans les espaces de Banach (a paraître).
- I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515–531. MR 370466, DOI 10.2140/pjm.1974.51.515
- Jean Saint-Raymond, Jeux topologiques et espaces de Namioka, Proc. Amer. Math. Soc. 87 (1983), no. 3, 499–504 (French, with English summary). MR 684646, DOI 10.1090/S0002-9939-1983-0684646-1
- Charles Stegall, Gâteaux differentiation of functions on a certain class of Banach spaces, Functional analysis: surveys and recent results, III (Paderborn, 1983) North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp. 35–46. MR 761371, DOI 10.1016/S0304-0208(08)71465-8
- Michel Talagrand, Deux généralisations d’un théorème de I. Namioka, Pacific J. Math. 81 (1979), no. 1, 239–251 (French). MR 543747, DOI 10.2140/pjm.1979.81.239
- Michel Talagrand, Espaces de Baire et espaces de Namioka, Math. Ann. 270 (1985), no. 2, 159–164 (French). MR 771977, DOI 10.1007/BF01456180
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 167-176
- MSC: Primary 54C05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0831408-0
- MathSciNet review: 831408