On a conjecture of Zassenhaus on torsion units in integral group rings. II
HTML articles powered by AMS MathViewer
- by César Polcino Milies, Jürgen Ritter and Sudarshan K. Sehgal
- Proc. Amer. Math. Soc. 97 (1986), 201-206
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835865-5
- PDF | Request permission
Abstract:
Suppose that a group $G$ has a normal subgroup $C$ where $C$ and $G/C$ are cyclic of relatively prime orders. Then any torsion unit in $ZG$ is rationally conjugate to a trivial unit.References
- César Polcino Milies and Sudarshan K. Sehgal, Torsion units in integral group rings of metacyclic groups, J. Number Theory 19 (1984), no. 1, 103–114. MR 751167, DOI 10.1016/0022-314X(84)90095-7
- I. Reiner, Maximal orders, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975. MR 0393100
- Jürgen Ritter and Sudarshan K. Sehgal, On a conjecture of Zassenhaus on torsion units in integral group rings, Math. Ann. 264 (1983), no. 2, 257–270. MR 711882, DOI 10.1007/BF01457529
- Jürgen Ritter and Sudarshan Sehgal, Isomorphism of group rings, Arch. Math. (Basel) 40 (1983), no. 1, 32–39. MR 720891, DOI 10.1007/BF01192749
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380, DOI 10.1007/978-1-4684-9458-7
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 201-206
- MSC: Primary 16A25; Secondary 11R33, 20C05
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835865-5
- MathSciNet review: 835865