On the Clifford index of algebraic curves
HTML articles powered by AMS MathViewer
- by Edoardo Ballico
- Proc. Amer. Math. Soc. 97 (1986), 217-218
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835868-0
- PDF | Request permission
Abstract:
Here we prove (over ${\mathbf {C}}$) that a general $(e + 2)$-gonal algebraic curve of genus $p$ has no $g_d^r$ with $d \leq p - 1,r \geq 2$ and $d - 2r \leq e$.References
- Enrico Arbarello and Maurizio Cornalba, Footnotes to a paper of Beniamino Segre: “On the modules of polygonal curves and on a complement to the Riemann existence theorem” (Italian) [Math. Ann. 100 (1928), 537–551; Jbuch 54, 685], Math. Ann. 256 (1981), no. 3, 341–362. MR 626954, DOI 10.1007/BF01679702
- Mark Green and Robert Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), no. 1, 73–90. MR 813583, DOI 10.1007/BF01388754
- Phillip Griffiths and Joseph Harris, On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980), no. 1, 233–272. MR 563378
- David Eisenbud and Joe Harris, Limit linear series: basic theory, Invent. Math. 85 (1986), no. 2, 337–371. MR 846932, DOI 10.1007/BF01389094
- Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR 664324, DOI 10.1007/BF01393371
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 217-218
- MSC: Primary 14H45; Secondary 14C20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835868-0
- MathSciNet review: 835868