Higher order singularities of morphisms to projective space
HTML articles powered by AMS MathViewer
- by Johan P. Hansen
- Proc. Amer. Math. Soc. 97 (1986), 226-232
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835870-9
- PDF | Request permission
Abstract:
This paper proves existence theorems for higher order singularities of a finite morphism to ${{\mathbf {P}}^m}$ and deduces a result on simple connectivity of varieties admitting a finite morphism of bounded singularity. The singularities are obtained by successive degeneration of double points of $f$. Our main tool is R. Schwarzenbergerâs notion of generalized secant sheaves and the connectedness theorem obtained by W. Fulton and the author.References
- P. Deligne, Le groupe fondamental du complĂ©ment dâune courbe plane nâayant des points doubles ordinaires est abĂšlian, SĂ©minaire Bourbaki, 1979/80, no. 543.
A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique. II, III, IV, Inst. Hautes Etude Sci. Publ. Math. 11 (1961), 32 (1967).
- William Fulton and Johan Hansen, A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. of Math. (2) 110 (1979), no. 1, 159â166. MR 541334, DOI 10.2307/1971249
- William Fulton and Robert Lazarsfeld, Connectivity and its applications in algebraic geometry, Algebraic geometry (Chicago, Ill., 1980) Lecture Notes in Math., vol. 862, Springer, Berlin-New York, 1981, pp. 26â92. MR 644817
- Terence Gaffney, Multiple points and associated ramification loci, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 429â437. MR 713082, DOI 10.1090/pspum/040.1/713082
- Terence Gaffney and Robert Lazarsfeld, On the ramification of branched coverings of $\textbf {P}^{n}$, Invent. Math. 59 (1980), no. 1, 53â58. MR 575080, DOI 10.1007/BF01390313
- Akikuni Kato, Singularities of projective embedding (points of order $n$ on an elliptic curve), Nagoya Math. J. 45 (1972), 97â107. MR 306206 R. Lazarsfeld, Thesis, Brown University.
- Joel Roberts, Singularity subschemes and generic projections, Trans. Amer. Math. Soc. 212 (1975), 229â268. MR 422274, DOI 10.1090/S0002-9947-1975-0422274-3
- R. L. E. Schwarzenberger, The secant bundle of a projective variety, Proc. London Math. Soc. (3) 14 (1964), 369â384. MR 0159826, DOI 10.1112/plms/s3-14.2.369 R. Thorn, Les singularitĂ©s des applications diffĂ©rentiables, Ann. Inst. Fourier (Grenoble) 6 (1955/56), 43-87.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 226-232
- MSC: Primary 14E22; Secondary 14E20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835870-9
- MathSciNet review: 835870