Integral representation without additivity
HTML articles powered by AMS MathViewer
- by David Schmeidler
- Proc. Amer. Math. Soc. 97 (1986), 255-261
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835875-8
- PDF | Request permission
Abstract:
Let $I$ be a norm-continuous functional on the space $B$ of bounded $\Sigma$-measurable real valued functions on a set $S$, where $\Sigma$ is an algebra of subsets of $S$. Define a set function $v$ on $\Sigma$ by: $v (E)$ equals the value of $I$ at the indicator function of $E$. For each $a$ in $B$ let \[ J(a) = \int _{ - \infty }^0 {(v (a \geq \alpha ) - v (S))d\alpha + \int _0^\infty {v (a \geq \alpha )d\alpha .} } \] Then $I = J$ on $B$ if and only if $I(b + c) = I(b) + I(c)$ whenever $(b(s) - b(t))(c(s) - c(t)) \geqslant 0$ for all $s$ and $t$ in $S$.References
- Gustave Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295 (1955). MR 80760
- C. Dellacherie, Quelques commentaires sur les prolongements de capacités, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971, pp. 77–81 (French). MR 0382686 Dunford and J. T. Schwartz (1957), Linear operators. Part I, Interscience, New York. Schmeidler (1984), Subjective probability and expected utility without additivity (previous version (1982), Subjective probability without additivity), Foerder Inst. Econ. Res., TelAviv Univ. S. Shapley (1965), Notes on $n$-person games. VII: Cores of convex games, Rand Corp. R.M. Also (1971), Internat. J. Game Theory 1, 12-26, as Cores of convex games.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 255-261
- MSC: Primary 28C05; Secondary 47H07, 60A10, 62C10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835875-8
- MathSciNet review: 835875