Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Integral representation without additivity
HTML articles powered by AMS MathViewer

by David Schmeidler
Proc. Amer. Math. Soc. 97 (1986), 255-261
DOI: https://doi.org/10.1090/S0002-9939-1986-0835875-8

Abstract:

Let $I$ be a norm-continuous functional on the space $B$ of bounded $\Sigma$-measurable real valued functions on a set $S$, where $\Sigma$ is an algebra of subsets of $S$. Define a set function $v$ on $\Sigma$ by: $v (E)$ equals the value of $I$ at the indicator function of $E$. For each $a$ in $B$ let \[ J(a) = \int _{ - \infty }^0 {(v (a \geq \alpha ) - v (S))d\alpha + \int _0^\infty {v (a \geq \alpha )d\alpha .} } \] Then $I = J$ on $B$ if and only if $I(b + c) = I(b) + I(c)$ whenever $(b(s) - b(t))(c(s) - c(t)) \geqslant 0$ for all $s$ and $t$ in $S$.
References
  • Gustave Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295 (1955). MR 80760
  • C. Dellacherie, Quelques commentaires sur les prolongements de capacités, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Lecture Notes in Math., Vol. 191, Springer, Berlin, 1971, pp. 77–81 (French). MR 0382686
  • Dunford and J. T. Schwartz (1957), Linear operators. Part I, Interscience, New York. Schmeidler (1984), Subjective probability and expected utility without additivity (previous version (1982), Subjective probability without additivity), Foerder Inst. Econ. Res., TelAviv Univ. S. Shapley (1965), Notes on $n$-person games. VII: Cores of convex games, Rand Corp. R.M. Also (1971), Internat. J. Game Theory 1, 12-26, as Cores of convex games.
Similar Articles
Bibliographic Information
  • © Copyright 1986 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 97 (1986), 255-261
  • MSC: Primary 28C05; Secondary 47H07, 60A10, 62C10
  • DOI: https://doi.org/10.1090/S0002-9939-1986-0835875-8
  • MathSciNet review: 835875