On the oscillation of almost-periodic Sturm-Liouville operators with an arbitrary coupling constant
HTML articles powered by AMS MathViewer
- by S. G. Halvorsen and A. B. Mingarelli
- Proc. Amer. Math. Soc. 97 (1986), 269-272
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835878-3
- PDF | Request permission
Abstract:
In this paper we characterize those (Bohr) almost periodic functions $V$ on ${\mathbf {R}}$ for which the Sturm-Liouville equations \[ - y'' + \lambda V(x)y = 0,\quad x \in \mathbf {R},\] are oscillatory at $\pm \infty$ for every real $\lambda \ne 0$, or, equivalently, for which there exists a real $\lambda \ne 0$ such that the equation has a positive solution on ${\mathbf {R}}$.References
- A. S. Besicovitch, Almost periodic functions, Dover Publications, Inc., New York, 1955. MR 0068029
- Harald Bohr, Almost Periodic Functions, Chelsea Publishing Co., New York, N.Y., 1947. MR 0020163 S. G. Halvorsen and A. B. Mingarelli, The large-scale structure of the domains of non-oscillation of second order differential equations with two parameters, preprint.
- Lawrence Markus and Richard A. Moore, Oscillation and disconjugacy for linear differential equations with almost periodic coefficients, Acta Math. 96 (1956), 99–123. MR 80813, DOI 10.1007/BF02392359
- Richard A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125–145. MR 68690
- Svatoslav Staněk, A note on the oscillation of solutions of the differential equation $y^{\prime \prime }=\lambda q(t)y$ with a periodic coefficient, Czechoslovak Math. J. 29(104) (1979), no. 2, 318–323. MR 529519
- Aurel Wintner, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368–380. MR 42005, DOI 10.2307/2372182
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 269-272
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835878-3
- MathSciNet review: 835878