A Poincaré-type inequality for solutions of elliptic differential equations
HTML articles powered by AMS MathViewer
- by William P. Ziemer
- Proc. Amer. Math. Soc. 97 (1986), 286-290
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835882-5
- PDF | Request permission
Abstract:
A sharpened version of the Poincaré inequality is shown to hold for solutions of a large class of second order elliptic equations.References
- Sheldon Axler and Allen L. Shields, Univalent multipliers of the Dirichlet space, Michigan Math. J. 32 (1985), no. 1, 65–80. MR 777302, DOI 10.1307/mmj/1029003133 E. DiBenedetto and N. S. Trudinger, Harnack inequalities for quasi-minima of variational integrals, Australian National Univ. Research report, 1984.
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0 I. Johnstone and M. Shahshahani, A Poincaré-type inequality for solutions of linear elliptic equations, with statistical applications, preprint, 1984.
- Norman G. Meyers and William P. Ziemer, Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. Math. 99 (1977), no. 6, 1345–1360. MR 507433, DOI 10.2307/2374028
- Norman G. Meyers, Integral inequalities of Poincaré and Wirtinger type, Arch. Rational Mech. Anal. 68 (1978), no. 2, 113–120. MR 493308, DOI 10.1007/BF00281405
- John C. Polking, Approximation in $L^{p}$ by solutions of elliptic partial differential equations, Amer. J. Math. 94 (1972), 1231–1244. MR 324215, DOI 10.2307/2373572
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI 10.1007/BF02391014
- Neil S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. MR 226198, DOI 10.1002/cpa.3160200406
- William P. Ziemer, Mean values of subsolutions of elliptic and parabolic equations, Trans. Amer. Math. Soc. 279 (1983), no. 2, 555–568. MR 709568, DOI 10.1090/S0002-9947-1983-0709568-3
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 286-290
- MSC: Primary 35B45; Secondary 35J15, 35J60, 35R45
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835882-5
- MathSciNet review: 835882