A new inequality for complex-valued polynomial functions
HTML articles powered by AMS MathViewer
- by Themistocles M. Rassias
- Proc. Amer. Math. Soc. 97 (1986), 296-298
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835884-9
- PDF | Request permission
Abstract:
Let ${f_1},{f_2}, \ldots ,{f_n}:{\mathbf {C}} \to {\mathbf {C}}$ be complex-valued polynomial functions of degrees ${d_1},{d_2}, \ldots ,{d_n}$, respectively, of a complex variable $z$. Then \[ {M_{{f_1}}}{M_{{f_2}}} \cdots {M_{{f_n}}} \geq {M_{{f_1}{f_2} \cdots {f_n}}} \geq k{M_{{f_1}}}{M_{{f_2}}} \cdots {M_{{f_n}}}\] where \[ k = {\left ( {\sin \frac {2}{n}\frac {\pi } {{8{d_1}}}} \right )^{{d_1}}}{\left ( {\sin \frac {2} {n}\frac {\pi }{{8{d_2}}}} \right )^{{d_2}}} \cdots {\left ( {\sin \frac {2}{n}\frac {\pi }{{8{d_n}}}} \right )^{{d_n}}}.\]References
- Themistocles M. Rassias, On the derivative of a complex valued function, Bull. Inst. Math. Acad. Sinica 12 (1984), no. 4, 423–425. MR 794413
- G. M. Rassias, J. M. Rassias, and T. M. Rassias, A counterexample to a conjecture by P. Erdős, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 4, 119–121. MR 457687
- Steve Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 87–121. MR 799791, DOI 10.1090/S0273-0979-1985-15391-1
- Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1–36. MR 590817, DOI 10.1090/S0273-0979-1981-14858-8 M. J. Todd, Polynomial expected behavior of a privoting algorithm for linear complementary and linear programming problems, Technical Rep. No. 595, School of Operations Research and Industrial Engineering, Cornell Univ., Ithaca, N. Y., 1983.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 296-298
- MSC: Primary 30A10; Secondary 30C10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835884-9
- MathSciNet review: 835884