Approximation on disks
HTML articles powered by AMS MathViewer
- by P. J. de Paepe
- Proc. Amer. Math. Soc. 97 (1986), 299-302
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835885-0
- PDF | Request permission
Abstract:
It is shown that if the functions $F$ and $G$ are defined in a neighborhood of the origin in the complex plane and are in a certain sense like ${z^m}$ and ${z^{ - n}}$ with $\gcd (m,n) = 1$, then on sufficiently small closed disks $D$ around 0 every continuous function on $D$ can be uniformly approximated by polynomials in $F$ and $G$.References
- Michael Freeman, The polynomial hull of a thin two-manifold, Pacific J. Math. 38 (1971), 377–389. MR 308442, DOI 10.2140/pjm.1971.38.377 S. N. Mergelyan, Uniform approximations to function of a complex variable, Amer. Math. Soc. Tralsi. (1) 3 (1962), 281-391.
- Steven Minsker, Some applications of the Stone-Weierstrass theorem to planar rational approximation, Proc. Amer. Math. Soc. 58 (1976), 94–96. MR 467322, DOI 10.1090/S0002-9939-1976-0467322-6 A. G. O’Farrell and K. J. Preskenis, Approximation by polynomials in two complex variables, Math. Ann. 246 (1980), 225-232.
- A. G. O’Farrell and K. J. Preskenis, Approximation by polynomials in two diffeomorphisms, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 1, 105–107. MR 722862, DOI 10.1090/S0273-0979-1984-15203-0
- P. J. de Paepe, Some applications of the Stone-Weierstrass theorem, Proc. Amer. Math. Soc. 70 (1978), no. 1, 63–66. MR 493360, DOI 10.1090/S0002-9939-1978-0493360-5
- Kenneth John Preskenis, Approximation on disks, Trans. Amer. Math. Soc. 171 (1972), 445–467. MR 312123, DOI 10.1090/S0002-9947-1972-0312123-3
- Edgar Lee Stout, The theory of uniform algebras, Bogden & Quigley, Inc., Publishers, Tarrytown-on-Hudson, N.Y., 1971. MR 0423083
- J. Wermer, Polynomially convex disks, Math. Ann. 158 (1965), 6–10. MR 174968, DOI 10.1007/BF01370392
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 299-302
- MSC: Primary 30E10; Secondary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835885-0
- MathSciNet review: 835885