A ONE-ONE SELECTION THEOREM

H. SARBADHIKARI

Abstract. Let X, Y be Polish spaces without isolated points and $B \subseteq X \times Y$ a Borel set such that \{x: B_x is nonmeager\} is comeager in X and \{y: B^y is nonmeager\} is comeager in Y. There is a comeager Borel $E \subseteq X$, a comeager Borel $F \subseteq Y$ and a Borel isomorphism f from E onto F such that graph of $f \subseteq B$.

1. Introduction. In [3] Mauldin proved that if $B \subseteq [0,1] \times [0,1]$ is a Borel set such that $\lambda(\{x: \lambda(B_x) > 0\}) = 1$ and $\lambda(\{y: \lambda(B^y) > 0\}) = 1$, where λ is the Lebesgue measure, then there exist Borel sets E and F of full measure and a Borel isomorphism f from E onto F such that the graph of $f \subseteq B$. Our main theorem is a category analogue of this. Throughout this paper, X, Y are taken to be Polish spaces without isolated points.

2. The main result. Our main theorem reads

Let $B \subseteq X \times Y$ be a Borel set such that \{x: B_x is nonmeager\} is comeager in X and \{y: B^y is nonmeager\} is comeager in Y. Then there is a comeager Borel $E \subseteq X$, a comeager Borel $F \subseteq Y$ and a Borel isomorphism f from E onto F such that the graph of $f = \{(x, y): y = f(x)\} \subseteq B$.

Our proof is analogous to that in [3] where several subsidiary results are proved, leading to the main theorem.

Theorem 1. Let $X = Y = [0,1]$, $B \subseteq X \times Y$ be a Borel set such that \{x: B_x is comeager\} is comeager in X. There is a comeager Borel $E \subseteq X$, a meager Borel $F \subseteq Y$ and a Borel isomorphism f from E onto F with graph $f \subseteq B$.

Proof. Fix an open base $\{U_n: n = 1,2,\ldots\}$ for Y consisting of nonempty intervals.

Note that B is comeager in $X \times Y$. Hence there exist dense open sets $V_1 \supseteq V_2 \supseteq \cdots$ in $X \times Y$ with $\bigcap_n V_n \subseteq B$.

By induction on n, we define a sequence of Borel sets $\{H_n: n = 1,2,\ldots\}$ such that for all n

1. $H_{n+1} \subseteq H_n \subseteq V_n$.

2. There exist a sequence $\{B_{n_i}: i = 1,2,\ldots\}$ of pairwise disjoint nonmeager $G_δ$ sets in X with $B_{n_i} \subseteq (k_i/2^n, (k_i + 1)/2^n)$ for some integer k_i and $\bigcup_i B_{n_i}$ comeager.

\[\text{Received by the editors November 6, 1984 and, in revised form, May 20, 1985.}\]
\[1980 \text{ Mathematics Subject Classification. Primary 04A15; Secondary 03E15, 54C65.}\]
\[\text{Key words and phrases. Comeager set, Borel isomorphism, graph of a function.}\]
in \(X \); a sequence \([a_{ni}, b_{ni}]: i = 1, 2, \ldots\) of pairwise disjoint closed intervals of length \(> 0 \) and \(\leq \frac{1}{2^n} \) and a nonempty open \(W_n \subseteq U_n \) with \(W_n \cap \bigcup_i [a_{ni}, b_{ni}] = \emptyset \) such that \(H_n = \bigcup_i B_{ni} X(a_{ni}, b_{ni}) \).

(3) For all \(x \), \(H_{n+1} x \subseteq H_{nx} \).

Now \(\cap_n H_n \) is the graph of the required function \(f \).

Construction of \(H_n \). Suppose \(H_n \) has been defined and equals \(\bigcup_i B_{mi} X(a_{mi}, b_{mi}) \) as in condition (2). For each \(i \), we define \(H_{n+1}^i \) so that \(\bigcup_i H_{n+1}^i = H_{n+1} \).

Fix \(i \). Note that \(V_{m+1} \cap (B_{mi} \times (a_{mi}, b_{mi})) \) is comeager in \(B_{mi} X(a_{mi}, b_{mi}) \). Hence by the Kuratowski-Ulam theorem, \(\{ y \in (a_{mi}, b_{mi}): V_{m+1}^y \cap B_{mi} \text{ is comeager in } B_{mi}\} \) is comeager in \((a_{mi}, b_{mi}) \). Pick \(y_1, y_2 \) from this set with \(y_1 < y_2 \). Let \(M > \max(\{1/(y_2 - y_1), 1/l, 2^m\}) \), where \(l = \max(\text{length } U_{m+1} \cap (a_{mi}, b_{mi}), 1) \) and

\[
A_n^i = \left\{ x \in B_{mi}: \left[y_1 - \frac{1}{4n}, y_1 + \frac{1}{4n} \right] \cup \left[y_2 - \frac{1}{4n}, y_2 + \frac{1}{4n} \right] \subseteq V_{m+1} x \cap (a_{mi}, b_{mi}) \right\}, \quad n \geq M.
\]

Then \(A_n^i \) is coanalytic and \(\bigcup_{n \geq M} A_n^i = V_{m+1}^y \cap V_{m+1} y_1 \cap B_{mi} \) is a comeager Borel set in \(B_{mi} \).

Find pairwise disjoint Borel sets \(B_n^i \subseteq A_n^i \), \(n \geq M \), with \(U_n B_n^i = U_n A_n^i \). Put \(C_n^i = B_n^i \cap (k_i/2^n, (2k_i + 1)/2^{n+1}) \), \(D_n^i = B_n^i \cap ((2k_i + 1)/2^{n+1}, (k_i + 1)/2^n) \). Note that by possibly ignoring a meager set, we can suppose \(C_n^i \) and \(D_n^i \) to be nonmeager \(G_\delta \) sets in \(X \). Put

\[
H_{n+1}^i = \bigcup_{n \geq M} \left(C_n^i X \left(y_1 - \frac{1}{4n}, y_1 + \frac{1}{4n + 1} \right) \cup D_n^i X \left(y_2 - \frac{1}{4n}, y_2 - \frac{1}{4n + 1} \right) \right).
\]

To construct \(H_1 \), use \(V_1 \cap X \times (0,1) \) as a comeager open set in \(X \times Y \) and proceed as above.

Corollary. The previous theorem is true even when \(X \) and \(Y \) are arbitrary Polish spaces without isolated points.

Proof. Since the irrationals are homeomorphic to a comeager \(G_\delta \) subset of \([0,1]\), the result is true if \(X = Y = \text{irrationals} \).

Now any Polish space without isolated points contains a comeager \(G_\delta \) set homeomorphic to irrationals. Thus the result is true for \(X \), \(Y \) such spaces.

Theorem 2. Let \(B \subseteq X \times Y \) be such that \(\{ x: B_x \text{ is nonmeager } \} \) is comeager. Then there is a comeager Borel \(E \subseteq X \), a meager Borel \(F \subseteq Y \) and a Borel isomorphism \(f \) on \(E \) onto \(F \) such that \(\text{graph } f \subseteq B \).

Proof. Let \(U_1, U_2, \ldots \) be a countable open base for \(Y \). Let \(B_n^* = \{ x: B_x \cap U_n \text{ is comeager in } U_n \} \) and \(A_n = B_n^* - \bigcup_{m < n} B_m^* \). \(A_n \) is Borel for all \(n \) and \(\bigcap_n A_n \) is comeager in \(X \).

By ignoring a meager set if necessary, we can suppose that each \(A_n \) is a nonmeager \(G_\delta \). By induction on \(n \), we define \(f_n \) on \(E_n \subseteq A_n \). We then define \(f(x) = f_n(x) \) for \(x \in E_n \).
Suppose \(f_k, \ k \leq m, \) has been defined and range \(f_k \subseteq a \) meager \(F_a \) set, say \(F_k \subseteq U_k \). Put

\[
B_{m+1} = A_{m+1} \times \left(U_{m+1} - \bigcup_{i=1}^{m} F_i \right) \cap B.
\]

\(B_{m+1} \) is a Borel subset of \(A_{m+1} \times (U_{m+1} - \bigcup_{i=1}^{m} F_i) \) and \(\{ x: B_{m+1} \text{ is comeager (in } U_{m+1} - \bigcup_{i=1}^{m} F_i \} \} = A_{m+1}. \) By applying the previous result, get a comeager \(G_{m+1} \) in \(A_{m+1} \) and a Borel isomorphism \(f_{m+1} \) on \(E_{m+1} \) into \(U_{m+1} - \bigcup_{i=1}^{m} F_i \) such that range \(f_{m+1} \) is meager.

If \(f(x) = f_n(x) \) for \(x \in E_n \), \(f \) is a Borel isomorphism on \(\bigcup_n E_n \) into \(\bigcup_n F_n \). Thus domain \(f \) is comeager and the range is meager.

PROOF OF THE MAIN THEOREM. Find Borel sets \(E_1 \subseteq X, F_1 \subseteq Y \) such that \(E_1 \) is comeager, \(F_1 \) is meager and there is a Borel isomorphism \(h \) from \(E_1 \) onto \(F_1 \) satisfying graph \(h \subseteq B \).

Find Borel sets \(G \subseteq Y, H \subseteq X \) such that \(G \) is comeager, \(H \) is meager and there is a Borel isomorphism \(g \) from \(G \) onto \(H \) satisfying \(\{(x, y): x = g(y)\} \subseteq B - X \times F_1 \).

Define \(f \) on \(E_1 \cup H \) by

\[
f(x) = \begin{cases}
 g^{-1}(x) & \text{if } x \in H, \\
 h(x) & \text{if } x \in E_1 - H.
\end{cases}
\]

Putting \(E = E_1 \cup H, \ F = \text{range } f \), we get the result.

REMARKS. In [3] Mauldin raises some interesting questions of which the following are still open to our knowledge.

1. If \(B \subseteq [0, 1] \times [0, 1] \) is a Borel set with \(B_x, B_y \) of positive Lebesgue measure for all \(x \) and \(y \), is there a Borel isomorphism of \([0, 1] \) onto \([0, 1] \) whose graph is a subset of \(B \)?

2. Is the category analog of the above true?

ACKNOWLEDGMENT. I am grateful to Dr. R. D. Mauldin for bringing this problem to my attention and to Dr. S. M. Srivastava for simplifying the proof.

REFERENCES

Indian Statistical Institute, Division of Theoretical Statistics and Mathematics, 203 Barrackpore Trunk Road, Calcutta 700 035, India