On supercomplete spaces. III
HTML articles powered by AMS MathViewer
- by Aarno Hohti
- Proc. Amer. Math. Soc. 97 (1986), 339-342
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835894-1
- PDF | Request permission
Abstract:
We show that for each positive integer $n$ there is a fine uniform space $X$, topologically a subspace of the real line, such that ${X^n}$ is supercomplete, but ${X^{n + 1}}$ is not supercomplete. The space $X$ can also be chosen so that that ${X^n}$ is supercomplete for all $n \in N$, but the countably infinite power ${X^N}$ is not supercomplete.References
- Seymour Ginsburg and J. R. Isbell, Some operators on uniform spaces, Trans. Amer. Math. Soc. 93 (1959), 145–168. MR 112119, DOI 10.1090/S0002-9947-1959-0112119-4
- Aarno Hohti, On supercomplete uniform spaces. II, Czechoslovak Math. J. 37(112) (1987), no. 3, 376–385. MR 904765 M. Hušek and J. Pelant, Products and uniform spaces (manuscript). M. Hušek and M. Rice, Uniform spaces (manuscript).
- J. R. Isbell, Supercomplete spaces, Pacific J. Math. 12 (1962), 287–290. MR 156311
- J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323
- Teodor C. Przymusiński, On the notion of $n$-cardinality, Proc. Amer. Math. Soc. 69 (1978), no. 2, 333–338. MR 491191, DOI 10.1090/S0002-9939-1978-0491191-3
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 339-342
- MSC: Primary 54E15
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835894-1
- MathSciNet review: 835894