Concerning the function equation $f(g)=f$, regular mappings and periodic mappings
HTML articles powered by AMS MathViewer
- by Sam W. Young
- Proc. Amer. Math. Soc. 97 (1986), 367-371
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835900-4
- PDF | Request permission
Abstract:
Under certain conditions on the space $X$, given $f:X \twoheadrightarrow Y$ is light and $g:X \twoheadrightarrow X$, the equation $f(g) = f$ yields only periodic solutions for $g$.References
- Beverly L. Brechner, Extensions of compact group actions, Proceedings of the 1985 topology conference (Tallahassee, Fla., 1985), 1985, pp.Β 7β10. MR 851195
- N. E. Foland, A characterization of the almost periodic homeomorphisms on the closed $2$-cell, Proc. Amer. Math. Soc. 16 (1965), 1031β1034. MR 180958, DOI 10.1090/S0002-9939-1965-0180958-8
- Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R.I., 1955. MR 0074810, DOI 10.1090/coll/036
- E. Hemmingsen, Plane continua admitting non-periodic autohomeomorphisms with equicontinuous iterates, Math. Scand. 2 (1954), 119β141. MR 63027, DOI 10.7146/math.scand.a-10401 B. von Kerekjarto, Γber regulare Abbildingen von Flachen auf sich, Acta. Sci. Math. (Szeged) 7 (1934), 65-75. β, Γber die regularen Abbildungen des Torus, Acta. Sci. Math. (Szeged) 7 (1934), 76-84.
- J. Mioduszewski, On a quasi-ordering in the class of continuous mappings of a closed interval into itself, Colloq. Math. 9 (1962), 233β240. MR 143181, DOI 10.4064/cm-9-2-233-240
- Katsumi Numakura, On bicompact semigroups, Math. J. Okayama Univ. 1 (1952), 99β108. MR 48467
- Gerhard X. Ritter, A characterization of almost periodic homeomorphisms on the $2$-sphere and the annulus, General Topology Appl. 9 (1978), no.Β 3, 185β191. MR 510900, DOI 10.1016/0016-660x(78)90022-3
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 97 (1986), 367-371
- MSC: Primary 54C10; Secondary 54F20, 54F62, 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1986-0835900-4
- MathSciNet review: 835900